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Abstract. The elastic and capillary interactions between a pair of colloidal particles trapped on top of
a nematic film are studied theoretically for large separations d. The elastic interaction is repulsive and
of quadrupolar type, varying as d−5. For macroscopically thick films, the capillary interaction is likewise
repulsive and proportional to d−5 as a consequence of mechanical isolation of the system comprised of the
colloids and the interface. A finite film thickness introduces a nonvanishing force on the system (exerted
by the substrate supporting the film) leading to logarithmically varying capillary attractions. However,
their strength turns out to be too small to be of importance for the recently observed pattern formation
of colloidal droplets on nematic films.

PACS. 82.70.Dd Colloids – 68.03.Cd Surface tension and related phenomena – 61.30.-v Liquid crystals

1 Introduction

The interactions of colloidal particles trapped at fluid in-
terfaces have been found to differ significantly from the
corresponding interactions in bulk solvents. This has been
studied mostly for electrically charged particles trapped
at interfaces with water. On one hand, the presence of
the interface gives rise to direct dipolar electrostatic re-
pulsions between the colloids (see Refs. [1–3] for some ex-
perimental evidence), on the other hand deformations of
the interface may induce longer-ranged capillary attrac-
tions (briefly reviewed in Refs. [4–6]) which is possibly
the source of pattern formation observed in various exper-
iments [7–11]. (See, however, Ref. [12] for an alternative
explanation due to interface impurities.)

Recently [13,14], the experimental observation of or-
dered structures of glycerol droplets bound to a nematic-
air interface has been reported and attributed to an ef-
fective pair potential between the colloids which contains
a repulsive, elastic part due to director deformations in
the supporting nematic film and an attractive, capillary
part which is long-ranged and mediated by logarithmically
varying deformations of the nematic-isotropic interface
caused by the droplets. The schematic setup of this exper-
iment is depicted in Figure 1. According to reference [13],
the colloidal particles experience an upward force caused
by elastic forces due to director deformations in the sup-
porting nematic film. This upward force on the colloids
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is supposed to give rise to the aforementioned logarithmi-
cally varying interface deformation. Applying a superposi-
tion approximation for the deformation field, one can show
that the ensuing effective capillary interaction potential
between two colloids is likewise varying logarithmically.
This is similar to the flotation interaction of mm-sized par-
ticles at fluid interfaces for which the force on the colloids
is caused by gravity (see, e.g., Ref. [15]) and also paral-
lels the tentative explanation given for the experimentally
observed attractions between sub-μm charged colloids at
a water-oil interface [16] (for the controversy around this
explanation see, Refs. [17–24]).

However, it is now well established [17–19,21–23,25]
that interface deformations and effective colloidal inter-
actions varying logarithmically only arise in experimen-
tal systems which are not isolated mechanically. For me-
chanically isolated systems it can be shown [26–29] that
both the interface deformation around a single colloid and
the effective interaction between two of them are shorter-
ranged and the latter cannot be calculated reliably within
the superposition approximation.

In the following we will extend the arguments pre-
sented in references [21,26–29] to systems with colloids at
nematic interfaces. We will show that mechanical isolation
of the system “nematic film-colloid-air” can be violated
through a subtle interplay between the finite thickness of
the film and the anchoring conditions at the colloids and at
the nematic interfaces with the substrate and with the air,
respectively. However, for experimental conditions as the
ones described in reference [13], a quantitative estimate
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of the strength of the ensuing logarithmic attraction be-
tween the colloids yields that these attractions are unob-
servably small. Therefore it seems likely that this kind of
asymptotic capillary forces cannot be invoked as a rele-
vant mechanism to account for the observations reported
in reference [13].

The manuscript is organized as follows: In Section 2
the coarse-grained model for the nematic phase is intro-
duced which will serve as the basis for all subsequent cal-
culations. In Section 2.1 we study the case of an infinitely
thick nematic film. First, we compute the asymptotic form
of the director field and the ensuing elastic force between
two particles. Then we calculate the effective force arising
from the deformation of the fluid-nematic interface caused
by the elastic stresses. In Section 2.2 we consider a nematic
film of finite thickness, which models more closely the ex-
perimental setup described in reference [13]; for such a
system we extend the above calculations to the two oppo-
site cases of perpendicular and parallel anchoring of the
director field at the substrate surface. In Section 3 we dis-
cuss our results.

2 Coarse-grained model

In view of the mesoscopic length scales involved, we de-
scribe the bulk part of the nematic free-energy associ-
ated with the director deformations in terms of the Frank
free-energy expression within the one-coupling approxima-
tion [30]

Fb
ne =

∫
Vne

d3r fb(r)

=
K

2

∫
Vne

d3r
[
(∇ · n)2 + (∇× n)2

]
=

K

2

∫
Vne

d3r∇ni · ∇ni

+
K

2

∫
Vne

d3r∇ · [n(∇ · n) − (n · ∇)n]. (1)

Vne denotes the volume occupied by the nematic film, n

is the director field (n2 = 1), and the constant K is of the
order of 10−11 N [30]. The total divergence term in the last
line of equation (1) exhibits the so-called “K24-structure”
and is unimportant for the bulk equations describing the
equilibrium configuration. The surface free energies asso-
ciated with the interfaces with air and substrate, respec-
tively, (see Fig. 1) are described in terms of the Poulini
expression [31]

F s
ne =

W1

2

∫
Aair-ne

dA(n · eA)2

+
W2

2

∫
Asub-ne

S
Acoll-ne

dA(n · eA)2. (2)

Here, eA denotes the local surface normal unit vector
pointing outwards from the film or the colloid. Normal
alignment is favored for Wi < 0 and parallel alignment for
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Fig. 1. Schematic setup of the experiment reported in refer-
ence [13]. Colloidal glycerol drops (R = 1 . . . 7 μm) are trapped
at the surface of a thick nematic film (h ≈ 60 μm). The di-
rector field in the nematic film is sketched by the black lines
and their dotted interpolations. Nematic anchoring at the glyc-
erol substrate at the bottom of the film as well as on the sur-
face of the glycerol drops is parallel, whereas it is perpendicu-
lar (homeotropic) at the deformed nematic-air interface. Each
drop is necessarily accompanied by a topological defect (⊗).

Wi > 0. Typically one has |Wi| ∼ 10−5 N/m [31] so that
the length scale K/|Wi| ∼ 1μm is smaller than the range
of droplet radii investigated in reference [13]. Thus, in the
“strong anchoring” limit which we shall consider, the effect
of the boundary terms is so strong that as a first approxi-
mation it amounts to fixing the angle between the director
and the surface normal. We shall adopt W1 < 0 (normal
alignment at the nematic-air interface) and W2 > 0 (par-
allel alignment at the nematic-glycerol interfaces). Some
consequences of the deviations from the strong-anchoring
limit will be discussed in Appendix A.

These surface contributions to the free energy (“wet-
ting energies”) are small corrections to the surface ten-
sions which are mainly due to dispersion interactions.
We denote these non-nematic contributions to the surface
tensions as γ1 (colloid-air surface tension), γ2 (substrate-
nematic surface tension) and γ′ (nematic-air surface ten-
sion). Typically, these surface tensions are of the order
of 10−2 N/m. Therefore, they are much larger than the
constants Wi which determine the nematic contributions
to the surface tension. We see that due to the above an-
choring conditions, the surface tension of the substrate-
nematic interface carries no nematic contributions due to
n ·eA = 0 (Eq. (2)), whereas in the strong-anchoring limit
the full nematic-air surface tension is γ = γ′ + W1/2 ≈ γ′

due to n · eA = 1 (Eq. (2))1.

1 A genuine contribution to the surface tension of a nematic
interface arises if one takes into account the variation of the
nematic tensorial order parameter through the interface, de-
scribed by, e.g., the Landau-de Gennes free-energy functional
(generalizing Eq. (1)). The magnitude of these contributions
can be estimated by the surface tension of the interface between
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The canonical stress tensor πij associated with the
free-energy expression in equation (1) is given by

πij =
∂fb

∂nk,j
nk,i − δij fb, (3)

where nk,i = ∂nk/∂xi (summation over k). The total
stress tensor Πij is obtained by adding the contribution
of the isotropic pressure p:

Πij = πij − δij p. (4)

2.1 Macroscopically thick nematic film

First we consider the limiting case h → ∞ (i.e., very thick
nematic films (see Fig. 1))2. Due to the small values of
the elastic coupling constant, K � γ R, and of the an-
choring energy, |Wi| � γ, the equilibrium configuration
of a single colloid at the nematic-air interface deviates
only slightly from the reference configuration depicted in
Figure 2. In this latter configuration, the interface is flat
and the colloid is positioned such that the contact angle
fulfills Young’s law cos θ = (γ1 − γ2)/γ.

The total force on the whole system reads (the super-
script +(−) denotes evaluation on the positive (negative)
side of the oriented surface, i.e., on the side the arrows in
Figure 2— which indicate the surface normals— point to
(do not point to)):∮

S

dA · Π =

∫
V1

S
V2

dV (∇ · Π)

+

∫
Smen

S
S1

dA · (Π+ − Π
−)

= −
∫

Smen

dA(πzz + pair − p) ez

+

∫
S1

dA · [π + (pair − p)1]

= −
∫

Smen

dA πzz ez +

∫
S1

dA · π. (5)

In obtaining this equation we have applied Gauss’ theo-
rem. Furthermore we have used the relation ∇ · Π = 0 in
volumina V1 and V2 which is valid because the reference
configuration is taken to be in force equilibrium. This also
implies that the isotropic pressures above the interface

the nematic and the isotropic phase of a liquid crystal. Typi-
cally, such a surface tension is also O(10−5 N/m) ∼ |Wi| and
therefore small compared to the dispersion force contribution.
Furthermore, a distorted director structure in the bulk may also
give rise to surface energy contributions on the boundaries. For
an example, see reference [30], p. 131 and p. 174. Also in this
case it can be argued that the corresponding contributions to
the surface tension do not exceed |Wi|.

2 This was implicitly assumed also by the authors of refer-
ence [13] in discussing Figure 2 therein.
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Fig. 2. In the reference configuration the whole system is di-
vided into volumes V1 and V2. Volume V2 (enclosed by the up-
per dashed curve) includes the air and the glycerol drop and
volume V1 (enclosed by the lower dashed curve) includes the
nematic. The arrows indicate the direction in which the sur-
faces (including the infinitesimally displaced ones) are oriented:
S encloses the whole system, Smen is the interface between the
nematic phase and air (acting as a meniscus), and S1 is the in-
terface between the colloidal drop and the nematic phase. The
director field and the topological defect (⊗) are indicated as in
Figure 1. The radius of the three-phase contact line is denoted
by ρ0 = R sin θ, where θ is the contact angle of the air-nematic
interface with the colloid of radius R. ρ denotes the lateral
distance from the vertical symmetry axis of the colloidal drop.

(pair) and below it (p) are equal and that the director con-
figuration is given by the corresponding Euler-Lagrange
equilibrium equations following from the functional in
equation (1). Since at the interface S1 the colloidal drop is
rigidly attached to the liquid crystal, we can identify the
vertical force F on the colloid and the total force Fπ on
the air-nematic interface by

F ez =

∫
S1

dA · π (6)

and

Fπ = −
∫

Smen

dA πzz, (7)

respectively. Mechanical isolation of the system means
that the total force

∮
S

dA · Π acting on it is zero which
leads to

F = Fπ. (8)

For a given force on the colloid and a given stress
on the interface, the interface deformation relative to the
reference configuration can be determined perturbatively.
To that end, we summarize briefly those results of refer-
ence [21] which are pertinent also for the present system.
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With the introduction of the two small, dimensionless pa-
rameters

εF = −F/(2π ρ0 γ) and επ = −Fπ/(2π ρ0 γ), (9)

one can expand (up to second order in εF and επ) the
free-energy difference F associated with the interface de-
formation u(ρ ≥ ρ0) around a single colloid (see Fig. 2)
and with a vertical shift Δh which is the difference of
the colloid center position relative to that in the reference
configuration:

F 	 2πγ

∫
∞

ρ0

dρ ρ

[
1

2

(
du

dρ

)2

+
u2

2λ2
+

1

γ
πzz u

]

+πγ[u(ρ0) − Δh]2 − FΔh. (10)

Here, λ = (γ/(gρ̄m))1/2 is the capillary length associated
with the interface where g is the gravitational constant
and ρ̄m is the mass density of the nematic phase. This ex-
pression for the free energy contains all surface free-energy
changes relative to the reference configuration involving
the interfaces between air, nematic, or colloid. It also con-
tains the contributions due to volume forces acting on
the nematic (associated with λ) and the energy change
of the colloid upon vertical shifts (for further details see
Ref. [21]). Note that to leading (quadratic) order in επ, εF

the free-energy change of the nematic due to the shifted
interface and due to a change in the director configuration
with respect to the reference configuration is captured by
the term ∝ ∫

πzz u. (The analogous textbook argument for
electrostatics [32] can be easily generalized to the nematic
case described by the free-energy expression in Eq. (1).)

Minimizing F with respect to u(ρ) and Δh and fo-
cussing on the regime ρ � λ yields

u(ρ) 	 ρ0(επ − εF ) ln
Cλ

ρ
+

1

γ

∫ +∞

ρ

dσ σ πzz(σ) ln
σ

ρ
,

(11)
with C 	 1.12. We see that in the case of an isolated sys-
tem (επ = εF ) the logarithmic part of u(ρ) vanishes. The
second term on the rhs of equation (11) leads to u(ρ →
∞) ∝ ρ−n+2 if πzz ∝ ρ−n and thus describes a shorter-
ranged power law decay of the interface deformation.

The absence of logarithmic deformations for an iso-
lated system has been derived here under certain sim-
plifying conditions (small interfacial deformation every-
where, rotational symmetry). In Appendix B we demon-
strate that this conclusion holds in general.

2.1.1 Asymptotic director configuration and elastic force
between colloids

In references [33,34] it has been shown that a colloidal
drop immersed in the bulk of a liquid crystal is accompa-
nied by a single counterdefect such that the total topologi-
cal charge is zero (here, the volume occupied by the colloid
contains a topological charge which may be represented by
a virtual defect inside the colloid) and the asymptotic be-
havior of the director field is of dipolar character. Based

on similar considerations, we shall show that for a col-
loidal drop located at the air-nematic interface the bound-
ary conditions for that interface impose a quadrupole-like
asymptotic behavior of the director field. Macroscopically
far from the colloid the director is oriented parallel to the
z-axis. Accordingly, at large but finite distances r the di-
rector is given by n(r) 	 (n1, n2, 1 − O(n2

1, n
2
2)) and the

bulk free energy corresponding to equation (1) is given by

Fb
ne 	

K

2

∫
Vne

d3r

⎛
⎝ ∑

i=1,2

(∇ni)
2

+ O(n4
i )

⎞
⎠ . (12)

Here we have discarded the total divergence term in the
free-energy expression (1). It is unimportant for the bulk
equations and it adds a mere constant to the free energy
because the director is anchored normally at the bound-
ary (the nematic-air interface). Thus for each component
i = 1, 2 the equilibrium director field fulfills the Laplace
equation

Δni = 0. (13)

Analogously to electrostatics, the asymptotic solution for
ni can be expanded in terms of multipoles. To this end, we
consider the reference configuration in Figure 2. We choose
as the origin of the coordinate system the center of the
circle formed by the planar three-phase contact line. The
solution for the director field has to fulfill the following
requirements: i) rotational covariance around the z-axis3

and ii) ni(x, y, z = 0) = 0. Analyzing the multipole ansatz
(with r = (r1, r2, r3))

ni = qi
1

r
+

3∑
α=1

Piα
rα

r3
+

3∑
α,β=1

Qiαβ
rα rβ

r5
+ . . . , (14)

it follows that rotational covariance requires qi = 0,
Piα = P δiα + Pmag εiα3 and Qiαβ = Q′

β δiα + Q′

mag,β εiα3

(εijk is the Levi-Cività tensor). Pmag and Q′

mag,β are
dipole and quadrupole moments, respectively, for a direc-
tor field of “magnetic” type, i.e., for which div ni = 0
holds. The boundary condition ii) at the interface with
the air further imposes P = Pmag = 0 and Q′

β = Q δβ3,

Q′

mag,β = Qmag δβ3. It appears to be difficult geometrically
to match the asymptotic solution of “magnetic” type with
a solution near the colloid which obeys parallel anchoring
at the colloid surface. Therefore we discard the magnetic
quadrupole, i.e., the leading asymptotic term is given by
the remaining, “electric” quadrupole term

ni = Q
z ri

r5
+ . . . (z ≡ r3). (15)

This is at variance with reference [13] (see Eq. (3) therein
and the considerations in the paragraph above that equa-
tion which assume a dipole field) but it is consistent with
the analysis in reference [34]. Dimensional analysis yields
Q = O(R3) [34]. Note that we have derived the asymp-
totic behavior of the director field at the interface using

3 If D specifies the transformation matrix for such a rotation
then this requirement is given by n(D · r) = D · n(r).
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strong anchoring at the interface (n1 = n2 = 0). In Ap-
pendix A we discuss corrections to strong anchoring which
are, however, of subleading character and leave the leading
behavior (Eq. (15)) unchanged.

The asymptotic elastic interaction between two col-
loids in the bulk at distance d accompanied by a quadrupo-
lar director deformation has been analyzed in refer-
ence [35] (for weak anchoring) and in references [36,34]
(using a coarse-graining method, applicable also for strong
anchoring) yielding identical results. For the present con-
figuration (distance vector perpendicular to the asymp-
totic director) the elastic potential is repulsive and varies
as

Vel ∝ K Q2

d5
∝ γρ2

0 εF

(ρ0

d

)5

. (16)

We have used that the dimensionless force parameter εF

is proportional to Q2 which actually follows from equa-
tions (6, 8, 9), and (17) below. Note that we have simply
extrapolated the bulk results for two interacting colloids
which cause asymptotically quadrupolar deformations of
the director. This appears to be reasonable because the
asymptotic director field in the nematic phase for the in-
terface problem is precisely that of the bulk solution in
the lower half-plane and because the bulk solution is an-
tisymmetric with respect to z → −z, thus respecting the
boundary condition ni(x, y, z = 0) = 0. However, the pre-
cise numerical value of the quadrupole moment Q might
be rather different for the case of the colloid trapped at
the interface as compared to the bulk case.

2.1.2 Asymptotic behavior of the stress on the interface and
meniscus-induced effective potential between colloids

The asymptotic behavior of the stress tensor component
πzz at the interface follows from inserting equation (15)
into equation (3):

πzz|interface =
K

2

2∑
i=1

(
n2

i,z − n2
i,r1

− n2
i,r2

)∣∣∣∣∣
z=0

r→∞−→ K

2
Q2 1

ρ8
, (17)

(ρ2 = r2
1 + r2

2). Consequently the interface deformation
around a single colloid for a mechanically isolated system
obeys u(ρ → ∞) ∝ ρ−6 (see Eq. (11)).

For the problem of two identical colloids located at ρ1

and ρ2 (vectors are defined in the interface plane z = 0) a
distance d = |ρ1 − ρ2| � R apart, the expression for the
free energy is a straightforward generalization of the one
for the single-colloid free energy given in equation (10):

F̂ = γ

∫
Smen

d2ρ

[ |∇û|2
2

+
û2

2λ2
− π̂zz

γ
û

]

+
∑

i=1,2

{
γ

2ρ0

∮
∂Si

d�[Δĥi − û]2 − F̂iΔĥi

}
. (18)

Here, F̂i denotes the force on colloid i and Δĥi is the rel-
ative position of its center. The integration domain Smen

is the whole interface plane except for the two circular
disks bordered by the (reference configuration) contact
lines ∂Si. The meniscus-induced effective potential is the
difference between the equilibrium free energy of the two
colloids at distance d and their free energy at macroscopic
distance:

Vmen(d) = F̂eq(d) − F̂eq(d → ∞). (19)

As before, minimization with respect to û(ρ) and Δĥi

renders the equilibrium free energy.
The behavior of Vmen(d) has been analyzed in detail

in references [21,29]. Here we summarize these results as
far as they are relevant for the present problem. The in-
terfacial stress π̂zz may be decomposed generally as

π̂zz(ρ) = πzz(|ρ − ρ1|) + πzz(|ρ − ρ2|) + 2πzz,m(ρ)

≡ πzz,1 + πzz,2 + 2πzz,m. (20)

Here, πzz,i denotes the stress around colloid i which per-
tains to the problem of a single colloid. To quadratic or-
der the asymptotic director field around two colloids is
given by the superposition of the components ni of the
single-colloid solutions and thus to this order we recover
the decomposition in equation (20) with the mixed com-
ponent of stress field πzz,m given by

πzz,m =
K

2
Q2 (ρ − ρ1) · (ρ − ρ2)

|ρ − ρ1|5 |ρ − ρ2|5
. (21)

It turns out that for a system under an external force
(επ = εF ) the mixed term πzz,m does not contribute to the
leading term in Vmen. Thus in the case of a non-vanishing
external force this leading contribution to Vmen is obtained
by a superposition ansatz which consists in approximating
the interfacial deformation and the total stress field by the
sum of the respective single-colloid quantities only (π̂zz ≈
πzz,1 + πzz,2, û ≈ u1 + u2) [21,29]:

Vmen(ρ0 � d � λ) 	 −2π γ ρ2
0(επ − εF )2 ln

Cλ

d
(22)

(επ = εF ).

For an isolated system (επ = εF ) and for the stress
given in equation (17) the superposition approximation
π̂zz ≈ πzz,1 + πzz,2 yields Vmen ∝ ε2

F /d8 as the dominant
term. However, this is not the leading term, which rather
stems from πzz,m. This term has two peaks around the
colloid centers and therefore close to the colloids it can be
approximated by

πzz,m ≈ K Q2

2 d4

2∑
i=1

(−1)i ed · (ρ − ρi)

|ρ − ρi|5
, (23)

where ed = (ρ2−ρ1)/d. As discussed in reference [29], the
qualitative behavior of Vmen(d) is captured by the integral
over πzz,m:

Vmen(d)∝γρ3
0εF

∫
Smen

d2ρπzz,m(ρ)∝γρ2
0ε

2
F

(ρ0

d

)5

(24)

(επ = εF ).
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We note that this form of the mixed stress and thus the
leading behavior of Vmen(d) is formally analogous to the
contributions of the electric-field components parallel to
the interface in the case of charged colloids [29]. The
meniscus-induced potential Vmen is repulsive and falls off
asymptotically4 ∝ d−5, as does the likewise repulsive elas-
tic potential Vel. We note that Vel ∝ |εF | and Vmen ∝ ε2

F ,
so that the meniscus-induced potential is small compared
to the elastic one for the parameters of the experiment
reported in reference [13].

In order to explain the experimentally observed at-
tractions, in reference [13] a perturbative picture similar
to the one presented above was suggested, but the effect
of the interface stress πzz was neglected completely. (A
similar error has been made in Ref. [16] which the au-
thors of Ref. [13] refer to.) In a heuristic way, only an
“upward” force on the colloid (perpendicular to the inter-
face) associated with the anchoring “wetting” energy at
the nematic-particle interface has been invoked in refer-
ence [13], neglecting the force on the interface described
by πzz. In this way, the unbalance of the force gives
rise to a logarithmic term in the meniscus deformation
and in the meniscus-induced potential. However, mechan-
ical isolation (i.e., force balance) renders the meniscus-
induced potential actually repulsive and shorter-ranged
(see Eq. (24)), apparently in contrast to the experimen-
tal results. A logarithmically varying potential can only
arise if mechanical isolation is violated (see App. B). Be-
low we shall investigate whether a net force on the system
“colloid and interface” may appear if the thickness of the
nematic phase is finite, as it is the case in the actual ex-
periment.

2.2 Finite thickness of the nematic film

In our discussion of a finite film thickness of the nematic
phase we shall consider two cases:

1) The anchoring of the nematic director at the sur-
face of the bottom substrate is perpendicular as it
is the case at the upper interface with the air. This
case bears a strong formal resemblance to charged col-
loids on water surfaces which have been discussed in
references [21,29].

2) The anchoring at the bottom substrate surface is par-
allel (as in the experiment reported in Ref. [13]). At
large lateral distances from the colloids, this leads to a
director field which gradually rotates from parallel ori-
entation at the bottom substrate to the perpendicular
orientation at the upper interface.

For both cases the total force on the system —com-
prising air, nematic film, colloid, and the substrate— must
be zero. This leads to (see Fig. 3(a) and compare with

4 Superficially one would expect a leading decay Vmen ∝ d−4

as displayed in equation (23). However, due to the geometric
factor in the numerator of equation (23), this apparent leading
order vanishes upon integration.
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substrate

nematic film
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h

(a) (b)

z=−h

z=0

2h
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Smen

2

S1

b

b

b

Fig. 3. The reference configuration for a nematic film (a) dif-
fers from the reference configuration shown in Figure 2 by the
addition of the substrate volume V ′

2 . The interface between
the substrate and the nematic film is denoted by Ssub. Panel
(b) shows the string of image quadrupoles Qb = Q which
are needed to fulfill the boundary conditions for perpendicu-
lar anchoring of the director field (originating from the colloid
quadrupole Q) at both interfaces confining the nematic film.
The distance between any two nearest-neighbor quadrupoles
is 2h.

Eq. (5))

0 =

∮
S

dA · Π

=

∫
V1

S
V2

S
V ′

2

dV (∇ · Π)

+

∫
Smen

S
S1

S
Ssub

dA · (Π+ − Π
−)

= −
∫

Smen

dA(πzz + pair − p) ez

+

∫
S1

dA · [π + (pair − p)1]

+

∫
Ssub

dA(πzz + psub − p)ez. (25)

For reasons which will become clear in the discussion of the
second anchoring case, we consider the isotropic pressures
in the substrate and air, psub and pair, respectively, not
necessarily to be equal to the pressure p in the nematic
film. The second equation in equation (25) follows from
the equilibrium condition ∇ · Π = 0 which holds in all
volumina.

2.2.1 Perpendicular anchoring at both interfaces

As discussed above, the presence of the colloid asymp-
totically generates a quadrupolar director field which ful-
fills the boundary condition at the nematic-air inter-
face. In order to fulfill the boundary condition at the
substrate-nematic interface, an image quadrupole of the
same strength Q is needed which, however, leads to a vio-
lation of the nematic-air interface boundary condition and
requires a second image quadrupole etc. Continuation of
this process leads to a string of image quadrupoles as de-
picted in Figure 3(b). This string of quadrupoles generates
a stress field π which vanishes for large lateral distances.
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Therefore the isotropic pressures must be equal in all vo-
lumina: psub = pair = p. From equation (25) one finds that
the difference between the force F on the colloid and the
integrated stress Fπ at the nematic-air interface,

F − Fπ = ΔF = −
∫

Ssub

dA πzz, (26)

is given by the integrated stress over the substrate sur-
face, i.e., the total force on all quadrupoles above the
substrate surface exerted by the image quadrupoles in the
substrate. Expressed in terms of the force FQ-Q between
two quadrupoles at distance 2h, we find

−ΔF/FQ-Q =

∞∑
n=1

1

n6
+

∞∑
n=2

1

n6
+ . . .

=

∞∑
n=1

1

n5
= ζ(5) ≈ 1.04. (27)

In this equation, the first sum is the total force (divided
by FQ-Q) on the first quadrupole above the substrate
exerted by all quadrupoles in the substrate, the second
sum is the total force (divided by FQ-Q) on the second
quadrupole above the substrate, etc. For the force be-
tween two quadrupoles at distance 2h we find, using equa-
tions (15, 3), and (26)

FQ-Q =
5

6
π K

Q2

h6
. (28)

Thus mechanical isolation for the system “colloid and
nematic-air interface” is violated and the total force ΔF
on this system is (up to the factor 1.04) given by the
quadrupole force FQ-Q. Nevertheless the magnitude of
the corresponding induced logarithmic capillary poten-
tial (see Eq. (22) with επ − εF = ΔF/(2πγρ0)) is small,
because Q ∼ R3, due to dimensional arguments [34].
For parameters similar to the ones appearing in refer-
ence [13] (R/h 	 10−1, K/(γR) 	 10−4) we find Vmen 	
10−14 kBT ln(R/d), which is unimportant for the actual
intercolloidal interaction.

The elastic potential Vel(d) between two colloids is the
interaction between the second quadrupole and the first
quadrupole together with its string of image quadrupoles.
Using the solution given in references [36,35] we have
checked that Vel(d) remains repulsive. For d < h the over-
all magnitude of Vel(d) is somewhat weakened, whereas
for d � h a crossover to Vel(d) ∝ exp(−d/h) is observed5.

2.2.2 Parallel anchoring at the bottom substrate

We assume that the substrate induces a preferred in-plane
axis for the director orientation which we take to be the

5 This result can be obtained more easily by solving the field
equations Δni = 0 in cylindrical coordinates rather than by
using the image quadrupoles.

x-axis. With no colloid present at the nematic-air inter-
face, the equilibrium director field is given by

n0 =

⎛
⎝sin(−q0z)

0
cos(−q0z)

⎞
⎠ , q0 = π/(2h), (29)

with the consequence that both at the nematic-air and at
the nematic-substrate interface a constant stress is acting:

π0,zz =
K

2
q2
0 . (30)

For the unperturbed interface to be in equilibrium, the
air and substrate pressures differ from the pressure in the
liquid crystal: p − psub [air] = π0,zz.

We now introduce a single colloid at the nematic-air in-
terface in the reference configuration. Due to this pressure
difference, the force on the colloid and the integrated stress
over the nematic-air interface are given by (see Eq. (25))

F ez =

∫
S1

dA · (π − π0,zz 1), (31)

Fπ =

∫
Smen

dA(πzz − π0,zz), (32)

and the total excess force on the system “colloid and
nematic-air interface” is determined by

F − Fπ = ΔF = −
∫

Ssub

dA(πzz − π0,zz). (33)

In order to calculate the director field n and the stress ten-
sor π in the presence of the colloid, we introduce the aux-
iliary director deformation fields v(x, y, z) and w(x, y, z)
which parametrize the deviations from the unperturbed
director field n0 and which are small at large distances
from the colloid:

n =

⎛
⎝sin(−q0z + v) cos w

sin w
cos(−q0z + v) cos w

⎞
⎠ ≈ n0

+

⎛
⎝cos(q0z) v + 1

2 sin(q0z)(v2 + w2)
w

sin(q0z) v − 1
2 cos(q0z)(v2 + w2)

⎞
⎠ + O((v, w)3).

(34)

The first equality in equation (34) is a general parame-
trization of the director field n in terms of the auxiliary
fields v, w which fulfills n

2 = 1. These auxiliary fields
are taken to be zero at the substrate and the nematic-
air interface, i.e., the boundary conditions are v(x, y, 0) =
v(x, y,−h) = w(x, y, 0) = w(x, y,−h) = 0. The nematic
free energy of the film up to order O(v2, w2) is obtained by
inserting equation (34) into equation (1) for the Frank free
energy after dropping the total divergence of the K24-type.
Using the boundary conditions for v and w, we obtain [37]
(with the notation introduced in Eq. (3))

Ffilm
ne = F0 +

K

2

∫
Vfilm

d3r
(
v2

,i + w2
,i − q2

0 w2
)
. (35)
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Here, F0 is the free energy of the film without colloid.
At first glance it is not evident that this free energy is
positive definite. However, the boundary conditions on v
and w ensure positivity [37]. Upon minimization, we find
Δv = 0, i.e., the deformation field v of the director can
again be expanded in terms of electrostatic multipoles
(Eq. (14)). On the other hand, the solution for w must
fulfill the Helmholtz equation (Δ + q2

0)w = 0 and can be
expanded in terms of multipoles as follows:

w(r, θ, φ) =
1√
q0r

∞∑
j=0

j∑
m=−j

Yjm(θ, φ)

×(
wJ

jm Jj+1/2(q0r)+wY
jm Yj+1/2(q0r)

)
, (36)

where J [Y ]j+1/2(r) are the spherical Bessel functions of
the first [second] kind and Yjm(θ, φ) are the usual spheri-
cal harmonics for the standard set of spherical coordinates
r, θ, φ. (The origin is again taken as the center of the cir-

cular three-phase contact line.) The coefficients w
J[Y ]
jm are

dimensionless multipole moments.
The Dirichlet boundary conditions for v and w at the

two interfaces can be fulfilled as before by constructing
the full solution in terms of multipoles around the col-
loid and the corresponding image multipoles as shown
in Figure 3. Since rotational covariance is broken by the
parallel substrate anchoring, the solution for v contains
a nonzero dipole contribution. Nevertheless, the direc-
tor field still obeys a reflection symmetry with respect
to the xz-plane: v(x, y, z) = v(x,−y, z) and w(x, y, z) =
−w(x,−y, z). Therefore, the leading asymptotic behavior
for v is given by

v = Pv
z

r3
+ Qv

zx

r5
+ · · · + vimage. (37)

The dipole contribution should vanish for h → ∞. If one
assumes a power law dependence on h, dimensional anal-
ysis for Pv leads to

Pv = O(R2 (R/h)κ) (with κ > 0). (38)

The precise functional form of Pv turns out to be unim-
portant for the subsequent calculations. We note that an
asymptotic solution with a nonvanishing x-component of
the dipole moment cannot appear because it would not ful-
fill the boundary conditions and the reflection symmetry
w(x, y, z) = −w(x,−y, z) excludes any dipolar contribu-
tion in the solution for w (see footnote 6). Therefore the
leading asymptotic behavior of w takes the form

w =
zy

r2

1√
q0r

(
QJ

w J5/2(q0r) + QY
w Y5/2(q0r)

)
+ . . .

+wimage. (39)

6 In this respect the pictorial argument given in reference [13]
(see Fig. 3(b) therein) is slightly misleading (at least in an
asymptotic sense): there the assumed director configuration
around the colloids for the case of a finite film thickness is a
tilted dipole with a nonvanishing component v ∝ Pv,xx/z3.
Actually, the broken symmetry in the x-direction rather enters
through a tilted quadrupole.

We note that there are two quadrupolar contributions
(with dimensionless moments QJ

w and QY
w) which show

an oscillatory behavior for radial distances r � h (i.e.,
q0r � 1). On the other hand, for large film thicknesses
there is an intermediate asymptotic regime R � r � h:

w(q0R � q0r � 1) =
zy

r2

√
2

π

(
QJ

w

(q0r)
2

15
− QY

w

3

(q0r)3

)
+ · · · + wimage. (40)

For large film thicknesses the solution for the director field
near the nematic-air interface in the regime R � r � h
should coincide with the solution for macroscopically thick
films (Eq. (15)). Near the nematic-air interface, one has
v ≈ nx, w ≈ ny. Therefore one recovers the rotationally
covariant quadrupole solution of equation (15) for Qv = Q
(obtained by equating Eq. (37) with Eq. (15) for i = 1, i.e.,

r1 = x) and −3
√

2/π QY
w/q3

0 = Q (obtained by equating
Eq. (37) with Eq. (15) for i = 2, i.e., r2 = y). Since
QY

w ∼ q3
0Q and Q = O(R3), QY

w = O([q0R]3) is a very
small number.

The Dirichlet boundary conditions for w at the sub-
strate and at the nematic-air interface enforce that the
contribution to w due to the quadrupole QJ

w and all cor-
responding image quadrupoles is zero. This holds also for
the contribution of all higher multipoles of degree j for
which the radial dependence is given by Jj+1/2(r). The
only solution of the Helmholtz equation which fulfills the
boundary conditions and which, as an additional require-
ment, is smooth everywhere, is w ≡ 0. Since the Bessel
functions of the first kind are smooth everywhere, all re-
spective multipole moments must be zero. (This does not
hold for the multipole moments pertaining to the Bessel
functions of the second kind since Yj+1/2(r) is singular at
r = 0.)

The excess force on the system “colloid and nematic-
air interface” follows from equation (33) and can be ex-
pressed as

ΔF = −K

2

∫
Ssub

dA(v2
,z − 2q0 v,z + w2

,z), (41)

utilizing the boundary conditions for the solutions v and
w. For the multipoles appearing in the expansion of v
the method described in Subsection 2.2.1 may be used.
In order to obtain the quadrupolar contributions to w, we
perform the summation over the image multipoles and the
integration over the substrate surface numerically. Due to
the slow decay of Y5/2(r) ∝ (cos r)/r1/2 the stress integral
is superficially divergent. However, a detailed asymptotic
analysis yields convergence with the result

−ΔF = π K

(
3ζ(3)

2

P 2
v

h4
+

5ζ(5)

12

Q2
v

h6
+ cw (QY

w)2
)

,

(42)
where cw ≈ 0.30 has been determined numerically. Note
that the linear contribution due to the term ∼ q0 v,z in
the stress tensor (Eq. (41)) turns out to be zero, as can
be easily checked by applying Gauss’ theorem and the
field equation Δv = 0. Using the above considerations
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concerning the magnitude of the multipole moments Pv,
Qv and QY

w , we obtain

−ΔF

K
∼ aP

(
R

h

)4+2κ

+ aQ

(
R

h

)6

, (43)

where aP and aQ are numerical coefficients of order 1
and κ has been defined in equation (38). Again the ex-
cess force on the colloid falls off rapidly with increasing
film thickness such that the induced logarithmic capillary
interaction (see Eq. (22)) remains very weak. For the pa-
rameters characterizing the experimental system studied
in reference [13] (R/h ∼ 10−1, K/(γR) ∼ 10−4), we find
Vmen(d) ∼ 10−11−4κ kBT ln(R/d) which appears to be
undetectably small. Note that for d < h the direct elastic
repulsion remains essentially unchanged because in this
regime the leading term of the elastic interaction is given
by the repulsion between the two quadrupoles located at
the colloid sites. In this case the image quadrupoles can
be neglected.

3 Discussion and conclusion

We have investigated the effective potential between two
colloidal microspheres of radius R floating at asymptoti-
cally large distances d on an interface between a nematic
film of thickness h and air (Fig. 1). This effective potential
is the sum of an elastic interaction caused by the director
distortions around the colloids and of a capillary interac-
tion mediated by surface deformations. We have analyzed
the effective potential for large d employing the coarse-
grained Frank free energy (within the one constant ap-
proximation) for the director distortions and the linearized
Young-Laplace equation for the interface distortions.

In the case of a macroscopically thick nematic film,
the director deformation around a single colloid is of
quadrupolar type. Thus the induced elastic interaction
between two colloids at distance d is repulsive and of
quadrupolar type ∝ d−5. The capillary interaction is also
repulsive and decays ∝ d−5 but it is much weaker than
the elastic interaction. This rapid decay is a consequence
of the mechanical isolation of the system, i.e., of the fact
that the net force on the colloidal particles and the sur-
rounding interface vanishes.

A finite film thickness h leads to a violation of the me-
chanical isolation of the system “colloid and interface”.
(The excess force is counteracted by the film substrate
such that the whole experimental system is of course
in mechanical equilibrium.) However, on the thermal en-
ergy scale the strength of the ensuing logarithmic cap-
illary potential turns out to be very small. In the case
of homeotropic boundary conditions on both sides of
the nematic film the strength is proportional to (R/h)12

(see Eq. (28) and the subsequent discussion). For twisted
boundary conditions (parallel at the bottom substrate,
perpendicular at the upper nematic-air interface) there is
a qualitatively different asymptotic behavior of the direc-
tor field due to a dipole contribution, which is induced by
the broken rotational symmetry and vanishes for h → ∞.

However, even for these boundary conditions the strength
of the logarithmically varying capillary potential remains
extremely small, vanishing at least ∝ (R/h)8 (see Eq. (43)
and the subsequent discussion).

Thus our analysis based on the mechanical isolation of
the experimental system under consideration rules out a
significant attractive contribution ∼ ln d of capillary type
to the effective potential between two colloids at a nematic
interface. The amplitude of such a logarithmic contribu-
tion vanishes rapidly for large film thickness h. Therefore,
this effective pair potential does not provide a mechanism
for the stability of isolated colloid clusters at a nematic
interface as reported in reference [13].

Naturally one strives for other explanations for the
observation of stable clusters reported in reference [13].
There the mutual center-to-center distance between neigh-
boring colloids in the cluster has been found to be between
3R and 5R, depending on the radius R of the colloids. If
the cluster stability is attributed to a minimum in the ef-
fective pair potential at this range 3R . . . 5R of distances,
the applicability of the above asymptotic considerations
at such distances is doubtful for both the elastic and cap-
illary contributions to the effective pair potential:

– Elastic part: For the single-colloid problem, the asymp-
totic, quadrupolar form of the director field (Eq. (15))
is based on the assumption that the deviations of
the director from the preferred direction ez are small:
|nx[y]| � 1. At a radial distance ρ from the center

of the colloid this implies Q/ρ3 � 1, which seems
to be fulfilled for the dimensional estimate for the
quadrupole moment Q = O(R3) and for the distances
ρ = 3R . . . 5R under discussion. However, the absolute
magnitude of the director deformations is not fixed
by these arguments, so that it might be worthwhile
to determine the minimum of the Frank free energy
by a full numerical calculation in the presence of one
or two colloids at the nematic-air interface, similar
to reference [38], where the explicit director solution
around a single colloid in the bulk has been deter-
mined. Our analysis indicates that only if the mul-
tipolar expansion of the director field around a single
trapped colloid fails for distances ρ = 3R . . . 5R, there
is a chance for attractive elastic interactions between
two colloids at these distances. Failure of the multipole
expansion at these intermediate distances would point
to a strong deviation of the magnitude of the multipole
moments Mn of order n from the dimensional estimate
Mn ∼ Rn+1. Thus it is certainly worthwhile to deter-
mine multipole renormalizations for bulk and interface
configurations, taking into account the full nonlinear-
ity of the director field equations.

– Capillary part: Whenever the colloid-induced nematic
stress deviates from the asymptotic, quadrupolar form
(Eq. (17)), corrections to the asymptotic capillary po-
tential will arise. However, due to the smallness of the
dimensionless force εF (see Eq. (9), εF ∝ K/(γR) ≈
10−3) the perturbative treatment of the ensuing cap-
illary deformations is justified. Therefore, one of our
main findings, i.e., that the magnitude of the capillary
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potential (∝ ε2
F ) is always smaller than the magnitude

of the elastic interaction (∝ |εF |), is likely to hold also
for elastic stresses deviating from the asymptotic limit.
Another possible, subtle effect related to the
anisotropy inherent to nematic phases allows the sub-
strate to exert also a torque on the colloidal particles
and the surrounding interface. This case can be stud-
ied similarly to what we have done here. Actually, the
result can be obtained straightforwardly if the anal-
ogy of capillary deformation with 2D electrostatics is
employed (see, e.g., Ref. [25]): The net force creates
“capillary monopoles” Qcap with an interaction energy
Vmen(d) = Q2

cap/(2πγ) ln(Cλ/d) (see Eq. (22)). A net
torque creates “capillary dipoles” Pcap and the inter-
action energy between them is Vmen(d) ∼ (|Pcap|/d)2.
This decay is sufficiently slow to dominate asymptoti-
cally the nematic-mediated repulsion. However, dimen-
sional analysis yields Pcap ∼ R Qcap, so that the am-
plitude of this capillary energy, which must vanish for
large film thicknesses h → ∞, has also a too small
numerical value to explain the experimental results re-
ported in reference [13].

We recall that for simplicity our calculations have been
carried out in the “strong anchoring” limit. “Weak anchor-
ing” would lead to a different director field, and thus to
different values of the dimensionless forces εF and επ (see
Eq. (9)). It would also lead to an explicit contribution
to the expression (10) for the free energy accounting for
the anchoring “wetting” energies (Eq. (2)), which in the
“strong anchoring” limit considered so far were subsumed
in a (quantitatively negligible) additive renormalization of
the surface tensions. The consequences of this more gen-
eral case of no strong anchoring have to be explored yet,
but we do not expect that this alters our conclusion that a
logarithmically varying capillary attraction is ruled out by
mechanical isolation (εF = επ), because this latter result
is based on very general principles.

Finally we note that for a two-dimensional system, the
interactions between two upright circular colloids trapped
at the nematic-isotropic interface have been studied nu-
merically [39] using a Landau-de Gennes free energy. In
three dimensions, this corresponds to long, cylindrical col-
loids which are aligned side-by-side at the interface. For
boundary conditions that yield a similar, quadrupolar be-
havior of the director field around a single colloid [40], the
effective interaction is found to be repulsive and consistent
with a power law decay (for intermediate distance d/R up
to 7). In this particular two-dimensional situation, the re-
pulsive interactions appear to be longer-ranged ∝ d−1 and
in the numerical results for the director field there is no
trace of a sizeable interface deformation which would lead
to capillary attractions.

In summary, we have presented several arguments
which rule out an asymptotic attraction of capillary origin
in the effective interaction potential between two colloids
at a nematic interface. If one discards effective pair poten-
tials as the source of the stability of colloidal mesostruc-
tures as the ones found in reference [13], the question
arises whether this stability is a consequence of genuine

many-body effects [41]. Nematic surfaces (without col-
loids) can stabilize regular patterns of surface defects [30].
If these defects persist in the presence of colloids, the ex-
perimentally observed regular order of the colloids might
be attributed to them. This issue calls for further experi-
mental and theoretical investigations.
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Appendix A. Corrections to the

strong-anchoring limit

Here we consider the asymptotic director field around a
single colloid at the nematic-air interface in the case of
finite anchoring strength. For large distances from the
colloid, the overall deviations from the preferred director
n = (n1, n2, n3) = (0, 0, 1) are small and the total free
energy of the nematic phase is given by the harmonic ap-
proximation for the bulk part (Eq. (12)) and the Poulini
expression for the surface part:

Fne =
K

2

∫
Vne

d3r
∑

i=1,2

(∇ni)
2

+
W1

2

∫
Aair-ne

dA(n · eA)2

=
K

2

∫
Vne

d3r
(
(∇n1)

2
+ (∇n2)

2
)

+
W1

2

∫
Aair-ne

dA(1 − n2
1 − n2

2). (A.1)

The second equation holds because the normal eA of the
nematic-air interface Aair-ne is parallel to the z-direction
and n

2 = 1. For particles with radii R in the μm range,
such as those investigated in reference [13], the dimension-
less parameter α = K/(|W1|R) is smaller than 1. Min-
imizing the free energy renders the Laplace equation in
the bulk,

Δni = 0 (i = 1, 2), (A.2)

supplemented with the Robin boundary condition:

αR
∂

∂z
ni(x, y, z = 0) − ni(x, y, z = 0) = 0 (i = 1, 2).

(A.3)
The general, asymptotic solution is given by the multipole
ansatz (Eq. (14))

ni = qi
1

r
+

3∑
β=1

Piβ
rβ

r3
+

3∑
β,γ=1

Qiβγ
rβ rγ

r5
+ . . . , (A.4)

with the requirement of rotational covariance around the
z-axis. In view of the boundary condition (Eq. (A.3)), we
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note that the derivative in equation (A.3) applied to a
multipole of order m generates a multipole term of or-
der m + 1. Thus, to leading order in 1/r, the boundary
condition can only be met if the leading multipole (n	

i)
fulfills the strong-anchoring condition n	

i(z = 0) = 0 and
is accompanied by a subleading multipole (ns	

i ) which is
connected to the leading multipole through the condition
αR ∂zn

	
i(z = 0) = ns	

i (z = 0). Both the monopole and
the dipole do not fulfill the strong-anchoring condition
n	

i(z = 0) = 0. Therefore, as before, we find that the mul-
tipole expansion starts with the quadrupole solution and
that it is necessarily accompanied by a hexapole:

ni = n	
i + ns	

i , (A.5)

n	
i = Q

zri

r5
+ Qmagεiα3

zrα

r5
, (A.6)

ns	
i = αQR

ri(r
2 − 5z2)

r7
+ αQmagRεiα3

rα(r2 − 5z2)

r7
.

(A.7)

Since ∂zn
s	
i (z = 0) = 0, this solution (Eqs. (A.5–A.7)) ex-

actly satisfies the boundary condition in equation (A.3).
Thus the asymptotically dominant director field consists
of a quadrupole-hexapole superposition. Furthermore, the
magnitude of the accompanying hexapole moment is small
due to the factor α, therefore the results reported before
for strong anchoring (based on the leading quadrupole
only) are unaffected by a finite anchoring strength at the
nematic-air interface.

Appendix B. Force balance in a general

configuration

For the benefit of the reader, we discuss in this Appendix
some previous results [28,25] concerning the force balance
of a general equilibrium configuration and demonstrate
how the amplitude of an asymptotic, logarithmically vary-
ing interfacial deformation is determined solely by this
mechanical condition of force balance.

Figure 4 represents a colloidal particle in equilibrium
at the deformed interface; in general the deformation is
not small. The condition of mechanical equilibrium implies
that locally the net force on any part of the system must
vanish. Thus one has:

1) Each of the fluid phases is in equilibrium. We introduce
the forces exerted by each fluid phase on the particle,
on the whole fluid meniscus, and on the wall of the
container as

F
1(2)
part :=

∫
S

1(2)
part

dA · Π1(2), (B.1)

F
1(2)
men := −(+)

∫
Smen

dA · Π1(2), (B.2)

F
1(2)
wall := −

∫
S

1(2)
wall

dA · Π1(2), (B.3)

respectively, in terms of the stress tensor Π
1(2)(r) in

each fluid phase with due account for the orientation of

fluid phase 1

fluid phase 2

C

S
S 2

part

part
1S

0

men

Swall

Fig. 4. A general configuration of the particle and the fluid in-
terface. The arrows indicate the orientation of the correspond-

ing surfaces: Smen is the interface, S
1(2)
part is the surface of the

particle in contact with the lower (upper) fluid phase, Swall is
the surface of the container of the system (sketched here as a
quadrangular box for simplicity). The three-phase contact line
between the particle and the interface is denoted as C0.

the surfaces (see Fig. 4). The superscript 1(2) indicates
the lower (upper) phase in Figure 4. The condition of
mechanical equilibrium of each phase under the influ-
ence of these three forces reads

F
1(2)
part + F

1(2)
men + F

1(2)
wall = 0. (B.4)

The total force exerted by the fluids on the particle
is Fpart := F

1
part + F

2
part, and on the meniscus it is

Fmen := F
1
men +F

2
men. The expressions for these forces

reduce to those given in equations (6) and (7), respec-
tively, upon evaluation in the reference configuration
depicted in Figure 2.
If the condition of mechanical equilibrium is applied
locally to an infinitesimal volume in the bulk of each
of the fluid phases, it turns into ∇ · Π1(2) = 0. In the
nematic phase this condition yields the field equations
determining the director field.

2) The particle is in mechanical equilibrium under the
combined action of Fpart and the tension exerted by
the interface on the particle at the three-phase contact
line C0. This tension can be expressed in terms of a line
integral involving the surface tension γ:

Fcontact := −γ

∮
C0

d� ec, (B.5)

where ec is the unit vector tangent to the interface,
normal to the contact line, and oriented towards the
particle side. Therefore, the condition of mechanical
equilibrium reads

Fpart + Fcontact = 0. (B.6)

3) Any piece Sint ⊂ Smen of the fluid interface is in me-
chanical equilibrium. The force on Sint exerted by the
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fluid phases and the tension exerted on this piece at
its boundary, ∂Sint, are balanced:∫

Sint

dA · [Π2 − Π
1] + γ

∮
∂Sint

d� ec = 0, (B.7)

with ec oriented towards the exterior of Sint. If this
expression is applied locally to an infinitesimal piece
of interface, it turns into an equation for the interfa-
cial deformation relating the mean curvature of the in-
terface to the pressure jump accross it. If, in addition,
the interface deviates only slightly from a flat interface
(identified with the plane z = 0), this equation reduces
in turn to the well-known equation (B.9) below for the
local height u(x, y) over the plane z = 0.

The net force balance of the whole system follows
from the three separate balance conditions (B.4, B.6),
and (B.7): with Sint = Smen (so that ∂Sint = C0 ∪ Cwall;
Cwall is the three-phase contact line between phase 1,
phase 2, and the container enclosing the system), one finds
that, as expected, in equilibrium the net force of the outer
environment on the system must vanish7:

F
1
wall + F

2
wall − γ

∮
Cwall

d� ec = 0, (B.8)

where ec points to the exterior of the system.
The condition of mechanical equilibrium can be ap-

plied advantageously to obtain a precise statement about
the amplitude of an interfacial deformation u(ρ, φ) vary-
ing logarithmically with the lateral distance ρ � R from
the particle with radius R. Far away from the particle, in-
terface deformations and their gradients are small, so that
the linearized equation holds. Thus there is a distance ξ
beyond which the linear theory is applicable:

γ∇2u(r) = Π1
zz(r) − Π2

zz(r) (r ∈ Sext), (B.9)

where the piece of interface Sext is enclosed by the circle
ρ = ξ and the line Cwall. The general solution to this
inhomogeneous Laplace equation can be written as

u(ρ, φ) = A0 + B0 ln
ξ

ρ

+

+∞∑
m=1

[
Am

(
ρ

ξ

)m

+ Bm

(
ξ

ρ

)m]
cos m(φ−φm)

+
1

2πγ

∫
Sext

dφ′dρ′ρ′[Π1
zz(r

′)−Π2
zz(r

′)] ln
|r−r

′|
ρ

.

(B.10)

The fixed values of the constants Am, Bm, and φm are
determined by the boundary conditions. This expression
reduces to equation (11) in the particular case of rotational
symmetry and a wall located at infinity.

7 The reasoning can be easily generalized to the case that
in addition to the short-ranged influence of the wall there are
also external fields (gravity, electric force) acting on any part
of the system.

We can apply equation (B.7) to the piece Sint =
Smen\Sext enclosed by the contact line C0 and the circle
ρ = ξ. Invoking equation (B.6), one has

Fpart +

∫
Sint

dA · [Π2 − Π
1] = −γ

∮
ρ=ξ

d� ec

≈ −γ ez

∫ 2π

0

dφ ρ
∂u

∂ρ

∣∣∣∣
ρ=ξ

, (B.11)

where the last, approximate equality involves the leading-
order term in ∇u of the line integral. (This approximation
is justified because the interface deviates only slightly from
a flat interface at the circle ρ = ξ.) Evaluating this latter
term for the general solution (B.10), one finally finds that
the amplitude of the logarithmic term in equation (B.10)
is proportional to the force exerted by the upper and the
lower fluid on the particle and on the meniscus:

B0 =
1

2πγ
ez · [Fpart + Fmen] . (B.12)

In obtaining equation (B.12) we have used that in the
region Sext (where the interface is almost flat) one has to
leading order

∫
Sext

dA · [Π2 −Π
1] · ez ≈

∫
Sext

dφdρ ρ[Π2
zz(r)−Π1

zz(r)].

(B.13)

In conclusion, if the stress Π1
zz(r) − Π2

zz(r) decays suf-
ficiently fast with the distance ρ from the particle, the
solution in equation (B.10) will be dominated asymptoti-
cally by the logarithm with an amplitude given by equa-
tion (B.12), provided this amplitude does not vanish8. As
one can infer from equation (B.4), this latter condition
means physically that the walls exert a nonvanishing force:
a logarithmic term can only arise if mechanical isolation
of the system “colloid + interface” is violated. (Note that
Eq. (B.12) follows actually from Eq. (B.8) if the interfacial
deformations are small.)

We emphasize the generality of this result: it only re-
quires that the interface departs slightly from a flat one for
distances sufficiently far from the particle. (Otherwise it
is actually not useful to speak of a logarithmically varying
deformation to begin with.) In particular, the interfacial
deformation close to the particle may be arbitrarily large,
the particle itself need not be perfectly spherical, or it
may even consist of a many-body configuration lacking
any kind of symmetry.

8 To which extent this asymptotic regime is actually observ-
able in a particular experimental realization depends on the
precise functional form of Π1(2)(r) and the values of the con-
stant parameters Am, Bm, and φm entering the solution given
by equation (B.10).
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8. J. Ruiz-Garćıa, B.I. Ivlev, Mol. Phys. 95, 371 (1998).
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