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Abstract 

Pore space and grain geometry are important physical properties distinguished in reservoir rocks, particularly in 

sandstones, due to their influence on oil and gas reservoir quality. Therefore, a detailed study of pore space 

morphology and grain surface roughness in sandstone reservoir rocks is a key element in petroleum geology. It 

is eminent in understanding of the adhesion of hydrocarbons in rocks and coupled fluid flows in pores and along 

grain surfaces. 

In this work, sandstone samples taken from a well of a Northern German basin deposit have been analysed by 

thin section petrography, Confocal Raman Microscopy and Confocal Laser Scanning Microscopy (CLSM). The 

roughness of grain surfaces is analysed and the pore geometries of sandstone rocks are verified. Roughness and 

pore geometry have a significant impact on the wetting behaviour and adhesion properties of hydrocarbon 

fluids, water or carbon dioxide (CO2) to the pore walls.  
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The results show the relationship between the composition of sandstones and their pore geometry and the grain 

surface roughness. The geometry of the pore morphology and the grain surface shows a range from very rough 

to flat smooth crystal facets, from few hundreds to sub-micron, depending on the scale of observation. The 50x 

and 100x magnifications were applied in this study. The findings offer a detailed insight into the relationship of 

pore space morphology and the grain surface roughness. The results add important parameters to the calculation 

models for hydrocarbon exploitation and to enhancement of the amount of oil recovery. 

Keywords: reservoir rock; pore geometry; sandstones; confocal laser scanning microscope; enhanced oil 

recovery; petroleum geology. 

1. Introduction 

In sandstone reservoir rocks the porosity plays an important role because it relates to the total capacity of 

hydrocarbon reserves of sandstones. In addition, the grain surface roughness is an essential factor of reservoir 

quality as it controls the pore surface and the pore shape complexity. Therefore, a large influence on the 

hydrocarbon exploitation capacity is related to pore space morphology and adhesion of hydrocarbons to grain 

surfaces. The significant hydrocarbon volume is held in pore spaces and adhered on grain surfaces. This is a 

major factor leading to the loss of high percentage of hydrocarbon volume in the exploitation. Therefore, 

detailed investigations of the pore morphology and of the grain surface roughness not only reveal the fine 

structures insight pore spaces of rocks, but also allow to estimate the amount of reserved and exploitable oil in 

reservoir rocks via models. 

The variation of the pore shape and the grain morphology is directly influenced by diagenetic processes like, re-

orientation of grains during compaction, dissolution and simultaneous or subsequent replacement by authigenic 

minerals, which are precipitated or recrystallised during the diagenisis in depositional settings. The morphology 

of pore spaces depends on the grain size distribution, the shape of grains, packing and cementing, while the 

grain surface roughness is influenced by mineralogical and transportation parameters and the overgrowth by 

authigenic minerals. The pore geometry and the grain surfaces are usually altered during lithification, beginning 

with compaction and cementing of loose sediment grains and, finally, conversion into a solid rock.  

The quantitative characterisation of the roughness of particles/grains of detrital sediments and their pore 

morphology, has been the subject in many studies. Various techniques have been developped to this end such as 

e.g. the harmonic wavelet descriptors (HWD) that act as a mathematical microscope based method of the 

harmonic wavelet transform. The descriptors analyse structures of a grain appearing at different scales of 

resolution. Lower resolution levels represent the coarse aspects of the grain contour, while the higher resolution 

levels represent its increasingly fine structures [1, 2]. Pore morphology and pore surface roughness in rocks 

have been investigated using small-angle neutron scattering (SANS) and ultra-small angle neutron scattering 

(USANS) [3, 4, 5]. Also, confocal laser scanning microscope techniques can be applied to measure roughness 

and pore geometry. The authors in reference [6] performed 3-D geometry of the pore system of the 

Fontainebleau sandstone with different degrees of cementation and diagenesis, and the authors in reference [7] 

analysed the fracture surface roughness of granite.  
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The authors in reference [8] measured the microscopic three dimensional distributions of pore bodies and pore 

throats in sandstones with hydrocarbon reservoir potential. The authors in [9] also used a confocal laser 

scanning microscope to verify the three-dimensional pore of the Fontainebleau sandstone.  

In this study, the pore morphology and the sediment grain roughness have been analysed with the CLSM at 

various magnifications: 50x, 100x. From the data we calculated profiles, 3-D reconstructions, and root mean 

square roughness parameter to correlate the numerical values with the petrographic description. The pore space 

morphology of the investigated sandstone reservoir rocks is characterised by the features of the clastic grains, 

with rounded to well-rounded and sub-spheroidal and elongate shapes and grain sizes ranging from fine to 

medium. The clastic grains are arranged in the rhombohedral type, commonly forming triangular pore spaces 

and are cemented in the early phase, by the precipitation of calcite cements, present in most pore spaces. The 

sediment grain surfaces vary due to overgrowth by authigenic minerals, formed during diagenesis and leading to 

very rough grain surfaces. Different types of pore morphology and grain surfaces were observed, ranging from 

very rough, fractal-like surfaces to flat, smooth crystal facets. 

2. Samples and methods 

Selected sandstone samples were taken from core plugs derived from sandstone reservoir rocks of a well of the 

Northern German basin at a depth of approximately 5000 m. Thin sections of the samples were studied with a 

Leica DM 2500M petrographic microscope. Parts of the samples were separated into individual grains and small 

grain groups and mounted on top of a conical sample holder. Then the composition of these grains was 

characterised with a confocal Raman microscope (alpha300R; WITecGmbH, Ulm, Germany). Raman data were 

processed with WITec Project software. The grain surface roughness and the pore morphology were conducted 

with a digital confocal laser scanning microscope (CLSM, VK-8700) with a red laser (658 nm). 

The CLSM delivers digitally sandwiched surface images of the sample, with high depth of focus and 

quantitative topography for each layer. Two different objectives were used for data acquisition: 50x and 100x. 

This corresponds to a scan size of 140 µm x 105 µm and 70 µm x 50 µm, respectively. The image size was 1280 

x 1024 pixels. The resolution in z direction was 0.5 µm which was the mean distance between two adjacent 

layers. From the digital data set the root mean square roughness parameter (Rq) was calculated and the 

morphology of the pores was evaluated from 3D and profile images. To calculate the root mean square 

roughness on the nanometre scale the background waviness was removed. After an automatic plane tilt 

correction, the images were flattened subtracting an appropriate sphere to correct for a spherical surface. The Rq 

parameter was calculated for all images at 50x and 100x magnifications, following the formula below (VK 

Analyzer. Ver. 2.3 Formanalyse software). The root mean square Rq of the height of each point in the region of 

interest, is expressed as 

𝑅𝑅𝑞𝑞 = �
1
𝑁𝑁
�𝑍𝑍𝑛𝑛2
𝑁𝑁

𝑛𝑛=1

 

 

255 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2015) Volume 24 No  4,  pp 253-267 

Here. Zn indicates the height of each point of the reference surface. N is the number of measured points. The 

reference surface is defined as a plane at the average height of the filtered data. 

3. Results  

3.1. Petrography 

The three studied samples were fine to medium grained sandstones and have moderate to very good sorting. The 

grains were round to very round (figure 1.1 and 1.2), sometimes sub-rounded (figure 1.3) and the grain shape is 

commonly subspheroidal and elongate. In figure 1.3, the pores stained blue were formed by an open network. 

The intergranular pores occupied a high volume (15%). The pores displayed in figures 1.1 and 1.2 are filled 

mainly by calcite and clay cement, and sometimes show quartz overgrowth thus, the porosity is poor (5%-8%). 

Quartz grains (Q) with shiny, pale, reddish brown colour were the major components of the three samples, 

which contain a varying amount of other detrital particles such as weathered and dissolved alkaline feldspar (K-

F), plagioclase grains and rock fragments (R-F).  

The three samples displayed a complicated polystage diagenesis. Primarily, under pressure, the grains were 

partly corroded at grain boundaries (figure 1.2) and dissolved forming intragranular pores (figure 1.1 and 1.3), 

along with the precipitation and formation of cements of illite-chlorite minerals (IC) and/or haematite skins, 

coating the grains (figure 1.1 and 1.2). Subsequently, the precipitation of quartz cements (Qc) in pore spaces and 

overgrowth by quartz (Qz) along the pore boundaries occurred (figure 1.1). The last generation was the 

precipitation of calcite cements in pore spaces (figure 1.1 and 1.2). 

 

Figure 1.1: Illite-chlorite grain coatings (IC), syntaxial quartz overgrowth (Qz) on detrital quartz. Pore spaces 

are filled by calcite cement (Cc) and sometimes quartz cement (Qc). In the right picture (A), the arrow points to 

dissolved feldspar, forming micro pores within feldspar. 

Figure 1: Petrographic microscope images of samples RL I_2111, RL I_4146 and RL I_5041 corresponding to 

Figure 1.1, figure 1.2 and figure 1.3 with plane polarised (A) and crossed polars (B). 
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Figure 1.2: Illite-chlorite grain coatings (IC, bright), grain contacts are saturated (arrow) and pore-filling is 

calcite cement (Cc). Detrital grains are corroded. 

 

Figure 1.3: Open pores are stained blue and authigenic quartz overgrowth (Qz) on detrital grains. The arrow 

points to micro pores due to detrital grain dissolution. 

3.2. Grain roughness measurements 

The grain surface displayed various roughness levels, dependant on the scale of observation, at 50x or 100x 

magnification. In this CLSM investigations the results for a characteristic quartz grain surface roughness 

analysis showed that the texture and morphology of the quartz grain surface were altered during diagenesis due 

to compaction, cementation and the overgrowth by authigenic minerals. 

Figure 2 is an image of the quartz grain surface of sample RL I_2111. The quartz composition was verified by 

confocal Raman spectroscopy analysis (figure 2.1B). The quartz surface in figure 2.1 with dark gray colour is 

below that with white colour which is overgrown by authigenic minerals. However, the authigenic mineral 

coating cannot be confirmed by confocal Raman spectroscopy, because the concentration of the authigenic 

mineral is very low compared to the quartz. The Raman band intensity of the authigenic mineral is obscured by 

the quartz signal. As observed in CLSM image (figure 2.2) the quartz surface is very rough due to overgrowth 

by the authigenic minerals which form deep troughs and peaks (arrow marks).  
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The roughness of this quartz surface is evidenced by the root mean square, calculated for the entire image 

(figure 2.2A) with Rq: 2.52 µm. Additionally, the rough quartz surface was analysed along the line profile 

(figure 2.3B). The amplitude of this profile is quite rough with the presence of many high peaks and low valleys. 

The difference between the highest spike and lowest pit is 11.1 µm (figure 2.3B). 

 

Figure 2.1: Overview image of quartz grain and Raman spectrum. 

 

Figure 2.2: CLSM image of the quartz surface taken at 100x magnification. 

 

Figure 2.3: 3-D image and line profile of the quartz surface taken at 100x magnification. 
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The grain topography affected by diagenesis is illustrated in figure 3, the quartz grain of the sample RL I_4146 

is compacted at a grain contact area in the left of figure 3.1A and is overgrown by calcite as well, as analysed by 

the Raman spectrum in figure 3.1B. The compacted grain contact area and overgrowth of calcite, which form 

the rough quartz surface with low and high positions, are magnified and can be seen clearly in figure 3.2. The 

arrows point to calcite overgrowth, compacted area and real quartz surface in figure 3.2B. The roughness of the 

quartz surface is shown by the profile in figure 3.3B. The line profile is rather smooth for the original quartz 

surface, while the high peaks in the profile are only present in the calcite overgrown area and low valleys at 

compacted area (arrow marks). The roughness of the entire quartz surface, at 100x magnification in figure 3.2A 

is calculated and shows a roughness parameter of Rq 3.59 µm. 

 

Figure 3.1: Overview image of quartz grain at 5x magnification and Raman spectrum. 

 

Figure 3.2: CLSM image of the quartz surface taken at 100x magnification. 

Figure 4, shows the surface of a grain of sample RL I_5041. The Raman spectrum of the quartz grain is shown 

in figure 4.1B. As shown in figure 4.1A, the quartz surface was quite smooth with tiny pits due to collisions 

with other grains during transport or dissolution in diagenesis. This quartz surface was only slightly altered 

during diagenesis and probably was an original surface. Partially, the original quartz surface was covered by 

authigenic cement minerals with white colour, as pointed out by arrow mark in figure 4.2B. The calculated root 

mean square parameter is 1.57 µm. 
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Figure 3.3: 3-D image and line profile of the quartz surface taken at 100x magnification. 

 

Figure 4.1: Overview image of quartz grain at 5x magnification with binocular and Raman spectrum. 

 

Figure 4.2: CLSM image of the quartz surface taken at 100x magnification. 

For many grains taken from the three samples RL I_2111, RL I_4146 and RL I_5042, the roughness was 

calculated for 50x and 100x magnifications as shown by the root mean square roughness, Rq parameter in table 

1. 
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Table 1: Root mean square roughness Rq parameter calculated at 50x and 100x magnifications 

Order Sample 
Rq (µm) 

Sample 
Rq (µm) 

Sample 
Rq (µm) 

50x 100x 50x 100x 50x 100x 

1 RL I_2111_1 5.48 2.02 RL I_4146_1 9.9 3.59 RL I_5041_1 9.46 6.12 

2 RL I_2111_2 8.53 6.48 RL I_4146_2 5.83 1.87 RL I_5041_2 4.52 1.57 

3 RL I_2111_3 5.97 2.52 RL I_4145_3 9.29 9.2 RL I_5041_3 8.22 3.06 

4 RL I_2111_4 6.61 4.83       RL I_5041_4 10.09 3.23 

5 RL I_2111_5 5.59 5.34      RL I_5041_5 6.83 1.61 

6 RL I_2111_6 9.04 2.64       RL I_50441_6 5.22 2.31 

7 RL I_2111_7 3.5 2.54       RL I_50441_7 13.02 6.38 

8 RL I_2111_8 11.5 3.14       RL I_5041_8 8.72 3.76 

9 RL I_2111_9 6.32 3.44             

10 RL I_2111_10 6.27 4.46             

11 RL I_2111_11 9.99 8.25             

12 RL I_2111_12 4.33 2.86             

13 RL I_2111_13 8.59 5.04             

14 RL I_2111_14 13.47 5.32             

15 RL I_2111_15 4.18 3.67             

16 RL I_2111_16 8.99 1.36             

The root mean square roughness Rq depends on the analysed area of the grain surface. At 50x magnification 

corresponding to a relatively large observation area, the grain surface profile changes in a wide range leading to 

the large value of Rq. While at 100x magnification (small observation area), the analysed surface area shows 

more details and finer features can be seen. The grain surface profile only varies in a narrow field, hence leading 

to small Rq values. As shown in table 1, on the same analysed surface the root mean square Rq at 100x 

magnification is always smaller than that at 50x magnification for different observation areas. However, 

decreasing the analysed surface area by a factor of 2 does not decrease Rq by the same factor.  

Larger areas show the overview of the surface irregularities (50x), while smaller analysed areas (100x) show 

more details regarding overgrowth and coating. Therefore, at low magnification grain surfaces with the high 

root mean square roughness Rq creates rougher pore space than those with low Rq. Otherwise, the analysed 

surface area at high magnification, the root mean square roughness Rq has been characterised as fractal 

dimension due to revealing grain surface ruggedness corresponding to numerous curved segments. 

As given in table 1, at 50x magnification the grain surfaces of sample RL I_2111 have larger Rq values than of 

sample RL I_4146 and RL I_5041 which shows the smallest values. It means that pore surfaces of sample RL 

I_2111 are rougher. While at 50x and 100x magnifications, the Rq values of the grain surfaces of sample RL 

I_5041 are the smallest that means the pore surfaces are low roughness so the permeability of this sample is the 

highest. This is consistent with data obtained earlier [5].  
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The samples RL I_2111 and RL I_4146 with larger Rq values are on the contrary more rough pore surfaces and 

therefore less permeable. 

3.3. Pore space morphology 

The morphology of the pores of the investigated reservoir sandstone rocks is characterised by the size of the 

detrital grains and particularly the grain surfaces as well as growth of authigenic minerals. The primary pore 

morphology has been modified by both, cementation and authigenic mineral growth in the pores and on the 

clastic grain surfaces into the pore spaces, these add to the roughness of pores and complicate the pore 

morphology by protrusions of crystals into the pore space. 

In figure 5 a pore space of sample RL I_2111 is filled with precipitated authigenic mineral cement is shown. 

The mineral has subhedral shape pointing towards albite (confirmed on other samples by EDX and SEM). The 

surface of the albite has been slightly altered showing small inclusions (rectangles in figure 5A). The minerals 

surrounding the albite crystal are authigenic calcite cements and/or calcite inclusions (arrows and circle). The 

albite is displayed in the 3-D image (figure 5B). 

 

Figure 5: CLSM image taken at 100x magnification showing an albite authigenic mineral grown in the pore 

space of sample RL I_2111. 

The observed pore network in sample RL I_4146, in figure 6 exhibits, that pore geometry is formed and altered 

due to influence of diagenesis. As can be seen, open pore space is formed by the rhombohedral packing, that 

detrital grains arrange together forming a triangular pore space (Pore, figure 6.1A) and that the pore is connected 

to the neighbouring pores by the pore throat (arrow) as shown in the left image (figure 6.1A). Subsequently, the 

precipitation of calcite cement filled the pores. The calcite cleavage planes are visible in the centre of figure 

6.1A and its surface roughness is displayed by the line profile in figure 6.1B. This profile is quite rough with the 

presence of many high sharp peaks and valleys. In figure 6.2 another pore was drastically altered due to the 

growth of different authigenic minerals and the dissolution of minerals, on the left hand side (figure 6.2A) albite 

blades (arrow) are visible. In the centre of the pore needle-shaped crystals of illite (circle) grow into the pore 

space and overgrow the clastic grain. Some of the needles seem also to have grown from the altered feldspar 

surface (rectangle), partially this feldspar was dissolved, forming intragranular micro pores.  
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The profile (figure 6.2B) shows ruggedness of the pore space morphology. Likewise, the pore throats were also 

altered and narrowed by overgrowth as shown in figures 6.1 and 6.3. In figure 6.3 the pore throat was blocked 

by cement fill (arrow), this leads to isolated pores forming closed pore spaces and reducing permeability of 

rocks. In addition, as seen, the grain surface displays micro indention resulting probably from collisions with 

other grains during transportation or from dissolution during compaction (line mark), in the diagenetic stage 

authigenic minerals (circle) grew on this surface, which modified the original grain roughness and results in 

rough pore walls. 

 

Figure 6.1: CLSM image shows the structure of pore taken at 100x magnification. 

 

Figure 6.2: An image showing the growth of authigenic minerals in pores taken with CLSM at 100x 

magnification. 

 

Figure 6.3: Grain surface and pore throat of sample RL I_4146 imaged by CLSM at 50x magnification. The 

surface of the grain is sculptured by micro-pits (line mark) and overgrown by authigenic minerals (circle). The 

pore throat is blocked by cement filling (arrow). 
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The sample RL I_5041 had the highest porosity and the smallest root mean square Rq out of the three 

investigated samples, as most of the pores seemed to be connected by pore paths, as demonstrated in 

petrography analysis (figure 1.3). The pore body and pore throats of this sample are shown in the 3-D 

construction in figure 7. In figure 7.1A the structure of a pore space forms the boundary between grains (G). 

Some visible apparent illite barriers inside the pore divide the pore space into many micro pores, constructing 

micro-walls and increasing contact surfaces. The authigenic illite mineral is analysed with SEM (figure 7.1C 

and D) and EDX spectrum (figure 7.1E). The profile (figure 7.1B) displays the roughness of the pore surface 

and one of the illite barriers with 17 µm width as marked and thus partly obstructing the flow ability of fluids. 

The permeability is primarily associated with the porosity, pore sizes and their connectivity to allow the 

movement of fluids. However, the pore throats connect the open pores in this sample between two grain surfaces 

which are rather smooth and the pore path width is about 20 µm, as seen in figure 7.2. Thus the potential 

possible movement of fluids through the pores is much better than in the other samples (see figure 6.3). 

 

Figure 7.1: CLSM image shows a pore structure in 3-D (A) and in roughness profile (B) of the pore surface. 

SEM photographs (C and D) display fibrous illites growing into pore and coating on grain surface and EDX 

spectrum (E). 
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Figure 7.2: CLSM image showing a pore throat. 

In brief, the pore characteristics of the investigated sandstone reservoir rocks are associated firstly with the 

packing of detrital grains; secondly, the alteration of pore geometry through diagenetic processes is most 

relevant for potential fluid movement. This is demonstrated by the various pore spaces filled by cements, 

authigenic minerals e.g. in sample RL I_2111, figure 5A. Similarly, in samples RL I_4146 and RL I_5041 the 

pores are partly cemented by calcite and overgrown by illite and albite, fully or partially blocking the pore 

throats. Depending on the degree of diagenesis cementation leads to a decrease of the effective porosity and 

permeability of the sandstone reservoir rocks. 

4. Discussion and Conclusions 

In the three analysed sandstone samples, the major component is quartz grains with varying, subordinate 

components of other detrital particles like alkaline feldspar, plagioclase grains and rock fragments. The grain 

shape is commonly subspheroidal and elongate and the roundness is good. The three samples display a 

complicated multi phase diagenesis. Primarily, clay minerals are grown in the first stage of diagenesis through 

grain and matrix alteration. Coatings surrounding grains are generated during further diagenetic stages and are 

characterised by precipitation of quartz, albite and calcite from fluids, filling the pore spaces, this was also 

shown in a previous study [10]. Consequently, in the next phase of diagenesis illite replaced albite and feldspar, 

that formed at the expense of dissolved feldspar (figure 6.2A) at depth in burial diagenesis. In the latest phase 

calcite cements precipitated from fluid fills into the pore spaces, but overlapping onto quartz cement. 

The grain surface topography widely changes during the diagenesis, as observed on the overgrowth of cement 

and authigenic minerals. This results in grain surfaces with high roughness, as calculated by the root mean 

square roughness, Rq, parameter. 

Equally, the pore geometry was altered depending on the degree of diagenetic alteration. This is demonstrated 

where the pore space was completely filled by cements, as in sample RL I_2111. Likewise, in samples RL 

I_4146 and RL I_5041 the pores were partly cemented by calcite and overgrown by illite and albite. Moreover, 

the pore throats were blocked, therefore, leading to a decrease of the effective porosity and permeability of the 

reservoir rocks. 
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The grain roughness analysis at 100x magnification provides detailed characteristics of the grain surface 

roughness by the root mean square roughness Rq parameter. A comparison of the root mean square roughness Rq 

values, permeability analysis and fractal dimension D values derived from Small Angle Neutron Scattering 

Analysis experiments [5] showed good agreements. Small Rq values correspond to a decreased D value and 

higher permeability. The higher permeability means the fluid flows easily through the rocks. Therefore, the fluid 

flow through pore spaces of the sample RL I_5041 is less restricted than of the sample RL I_2111 and 4146. 

Hence, the efficiency of oil exploitation can be reached up high productivity which is extreme important in 

petroleum industries. These results are an additional step, in further studies of hydrocarbon exploitation of 

reservoir rocks, tertiary, enhanced recovery methods and CO2 storage in geological formations. Considerations 

of the pore morphology and pore roughness down to sub-micron scale and of the varying mineralogy of the 

pores, are crucial in calculations of the volume of recoverable or hydrocarbons and sequesterable CO2 

quantities. 

Acknowledgment  

We gratefully acknowledge financial support by the German Federal Ministry of Education and Research 

(BMBF) for the NanoPorO project FKZ 03G0709A. We thank the Ludwig-Maximilians-University Munich, 

Department of Earth and Environment Sciences, the Center of Smart Interfaces and the Department of Materials 

and Geosciences of the Technische Universität Darmstadt, Germany and Analysis Laboratory Center, Vietnam 

Petroleum Institute (VPI) for supporting the laboratories and carrying this investigation. We also thank RWE 

Dea AG for providing the samples for our research and for participating in the NanoPorO project and 

contributing important petrophysical data. 

References  

[1] Drolon, H., Druaux, F., Faure, A. “Particles shape analysis and classification using the wavelet transform”. 

Pattern Recognition Letters, vol., 21, pp. 473-482, 2000. 

[2] Drolon, H., Hoyez, B., Druaux, F., Faure, A. "Multiscale roughness analysis of particles: Application to the 

classification of detrital sediments”. International Association for Mathematical Geology, vol., 35, no.7, Oct 

2003. 

[3] Triolo, F., Triolo, A., Agamalian, M.M., Lin, J-S., Heenan, R.K., Lucido, G., Triolo, R. “Fractal approach in 

petrology: combining ultra small angle, small angle and intermediate angle neutron scattering”. J. Appl. Cryst, 

vol., 33, pp. 863-866, 2000. 

[4] Sen, D., Mazumder, S., Tarafdar, S. “Pore morphology and pore surface roughening in rocks: a small-angle 

neutron scattering investigation”. Journal of materials science, vol., 37, pp. 941-947, 2002. 

[5] Drobek, T., Strobel, J., Park, S., Lieu, K.P., Altermann, W., Lemmel, H., Lindner, P., Stark, R. W. “Small 

Angle Neutron Scattering Analysis of Porous Reservoir Rocks”. Internat. Symp. Soc. Core Analysts, Austin, 

Texas, USA, SCA2011-48, pp. 1-6, Sept. 2011. 

266 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2015) Volume 24 No  4,  pp 253-267 

[6] Menéndez, B., David, C., Nistal, A.M. “Confocal scanning laser microscope applied to the study of pore and 

crack networks in rocks”. Computer and Geosciences, vol., 27, pp. 1101-1109, 2001. 

[7] Chae, B.G., Ichikawa, Y., Jeong, G.C., Seo, Y.S., Kim, B.C. “Roughness measurement of rock 

discontinuities using a confocal laser scanning microscope and the Fourier spectral analysis”. Engineering 

Geology, vol., 72, pp. 181-199, 2004. 

[8] Petford, N., Davidson, G., and Miller, J.A. “Pore structure determination using confocal scanning laser 

microscopy”. Phys. Chem. Earth (A), vol., 24, no.7, pp. 563-567, 1999. 

[9] Fredrich, J.T., Greaves, K.H., Martin, J.W. “Pore geometry and transport properties of Fontainebleau 

sandstone”. Int. J. Rock Mech. Min. Sci and Geomech. Abstr. Vol., 30, No.7, pp. 691-697, 1993. 

[10] Altermann, W., Drobek, T., Frei, M., Heckl, W.M., Kantioler, M., Lieu, K.P., Stark, R.W., Strobel, J. 

"Surface and wetting properties of diagenetic minerals and sedimentary grains in reservoir rocks”. 

Geotechnologien Science Report, no. 16, pp. 65-75, Oct. 2010. 

267 
 


