20 research outputs found

    Terahertz emission spectroscopy of laser-induced spin dynamics in TmFeO3 and ErFeO3 orthoferrites

    Get PDF
    Copyright © 2014 American Physical SocietyUsing the examples of laser-induced spin-reorientation phase transitions in TmFeO3 and ErFeO3 orthoferrites, we demonstrate that terahertz emission spectroscopy can obtain novel information about ultrafast laser-induced spin dynamics, which is not accessible by more common all-optical methods. The power of the method is evidenced by the fact that, in addition to the expected quasi-ferromagnetic and quasi-antiferromagnetic modes of the iron sublattices, terahertz emission spectroscopy enables detection of a resonance optically excited at an unexpected frequency of ∼0.3–0.35 THz. By recording how the amplitude and phase of the excited oscillations depend on temperature and applied magnetic field, we show that the unexpected mode has all the features of a spin resonance of the Fe3+ ions. We suggest that it can be assigned to transitions between the multiplet sublevels of the 6A1 ground state of the Fe+3 ions occupying rare-earth positions.European Commission's 7th Framework Program (FP7/2007–2013)Engineering and Physical Sciences Research Council (EPSRC)Netherlands Organization for Scientific Research (NWO)Foundation for Fundamental Research on Matter (FOM)ERCRussian GovernmentRFB

    THz emission from Co/Pt bilayers with varied roughness, crystal structure, and interface intermixing

    Get PDF
    Ultrafast demagnetization of Co/Pt heterostructures induced by a femtosecond 800-nm laser pulse launches a spin current from Co to Pt and subsequent conversion of the spin current to a charge current in the Pt layer due to the inverse spin-Hall effect. At the same time, due to the spin-dependent photogalvanic effect, a circularly polarized femtosecond laser pulse also generates a photocurrent at the Co/Pt interface. Both ultrashort photocurrent pulses are effectively detected in a contactless way by measuring the THz radiation they emit. Here we aim to understand how the properties of the Co/Pt interface affect the photocurrents in the bilayers. By varying the interfacial roughness, crystal structure, and interfacial intermixing, as well as having an explicit focus on the cases when THz emissions from these two photocurrents reveal opposite trends, we identify which interface properties play a crucial role for the photocurrents. In particular, we show that by reducing the roughness, the THz emission due to the spin-dependent photogalvanic effect reduces to zero while the strength of the THz emission from the photocurrent associated with the inverse spin-Hall effect increases by a factor of 2. On the other hand, while intermixing strongly enhances the THz emission from the inverse spin-Hall effect by a factor of 4.2, THz emission related to the spin-dependent photogalvanic effect reveals the opposite trend. These findings indicate that microstructural properties of the Co-Pt interface play a decisive role in the generation of photocurrents

    Selective Excitation of Terahertz Magnetic and Electric Dipoles in Er3+ Ions by Femtosecond Laser Pulses in ErFeO3

    Get PDF
    We show that femtosecond laser pulse excitation of the orthoferrite ErFeO3 triggers pico- and subpicosecond dynamics of magnetic and electric dipoles associated with the low energy electronic states of the Er3+ ions. These dynamics are readily revealed by using polarization sensitive terahertz emission spectroscopy. It is shown that by changing the polarization of the femtosecond laser pulse one can excite either electric dipole-active or magnetic dipole-active transitions between the Kramers doublets of the 4I15/2 ground state of the Er3+(4f11) ions. These observations serve as a proof of principle of polarization-selective control of both electric and magnetic degrees of freedom at terahertz frequencies, opening up new vistas for optical manipulation of magnetoelectric materials

    Laser stimulated THz emission from Pt/CoO/FeCoB

    Get PDF
    The antiferromagnetic order can mediate a transmission of the spin angular momentum flow, or the spin current, in the form of propagating magnons. In this work, we perform laser stimulated THz emission measurements on Pt/CoO/FeCoB multilayers to investigate the spin current transmission through CoO, an antiferromagnetic insulator, on a picosecond timescale. The results reveal a spin current transmission through CoO with the diffusion length of 3.0 nm. In addition, rotation of the polarization of the emitted THz radiation was observed, suggesting an interaction between the propagating THz magnons and the Néel vector in CoO. Our results not only demonstrate the picosecond magnon spin current transmission but also the picosecond interaction of the THz magnons with the Néel vector in the antiferromagnet

    Ultrafast optical modification of exchange interactions in iron oxides

    Get PDF
    Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 10(3) Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm(-2) acts as a pulsed effective magnetic field of 0.01 Tesla.European Commission’s 7th Framework Program (FP7/2007–2013)EPSRCNetherlands Organization for Scientific Research (NWO)Foundation for Fundamental Research on Matter (FOM)European Research CouncilRussian Ministry of Education and ScienceRFBR-NSFC projectBureau of International CooperationNSFC projectNSFC-NWOEU Seventh Framework ProgramNWO by a Rubicon grantEuropean Commission (FP7-ICT-2013-613024–GRASP

    Ultrafast control of magnetic interactions via light-driven phonons

    Get PDF
    Resonant ultrafast excitation of infrared-active phonons is a powerful technique with which to control the electronic properties of materials that leads to remarkable phenomena such as the light-induced enhancement of superconductivity1,2, switching of ferroelectric polarization3,4 and ultrafast insulator-to-metal transitions5. Here, we show that light-driven phonons can be utilized to coherently manipulate macroscopic magnetic states. Intense mid-infrared electric field pulses tuned to resonance with a phonon mode of the archetypical antiferromagnet DyFeO3 induce ultrafast and long-living changes of the fundamental exchange interaction between rare-earth orbitals and transition metal spins. Non-thermal lattice control of the magnetic exchange, which defines the stability of the macroscopic magnetic state, allows us to perform picosecond coherent switching between competing antiferromagnetic and weakly ferromagnetic spin orders. Our discovery emphasizes the potential of resonant phonon excitation for the manipulation of ferroic order on ultrafast timescales6

    Far- and midinfrared excitation of large amplitude spin precession in the ferromagnetic semiconductor InMnAs

    Get PDF
    Ultrafast laser excitation of the ferromagnetic semiconductor InMnAs is shown to trigger spin precession with the largest amplitude reported for magnetic semiconductors so far. To reveal the electronic transitions mediating the coupling between light and spins, we compared the spin dynamics triggered by short terahertz (photon energy 5 meV) and midinfrared (photon energy 500 meV) pulses. The experiments reveal that terahertz pump pulses excite qualitatively similar spin dynamics, but are 100 times more energy efficient than the mid-IR pulses. This finding shows that in a semiconductor with hole-mediated ferromagnetism intraband electronic transitions mediate ultrafast and the most efficient coupling between light and spins

    Magnonic Metamaterials

    Get PDF
    A large proportion of the recent growth of the volume of electromagnetics research has been associated with the emergence of so called electromagnetic metamaterials1 and the discovered ability to design their unusual properties by tweaking the geometry and structure of the constituent “meta-atoms”. For example, negative permittivity and negative permeability can be achieved, leading to negative refractive index metamaterials. The negative permeability could be obtained via geometrical control of high frequency currents, e.g. in arrays of split ring resonators, or alternatively one could rely on spin resonances in natural magnetic materials, as was suggested by Veselago. The age of nanotechnology therefore sets an intriguing quest for additional benefits to be gained by structuring natural magnetic materials into so called magnonic metamaterials, in which the frequency and strength of resonances based on spin waves (magnons) are determined by the geometry and magnetization configuration of meta-atoms. Spin waves can have frequencies of up to hundreds of GHz (in the exchange dominated regime) and have already been shown to play an important role in the high frequency magnetic response of composites. Moreover, in view of the rapid advances in the field of magnonics, which in particular promises devices employing propagating spin waves, the appropriate design of magnonic metamaterials with properties defined with respect to propagating spin waves rather than electromagnetic waves acquires an independent and significant importance

    Terahertz magnetization dynamics induced by femtosecond resonant pumping of Dy3+ subsystem in the multisublattice antiferromagnet DyFeO3

    Get PDF
    Contains fulltext : 149639.pdf (publisher's version ) (Open Access
    corecore