782 research outputs found
Scenario of Accelerating Universe from the Phenomenological \Lambda- Models
Dark matter, the major component of the matter content of the Universe,
played a significant role at early stages during structure formation. But at
present the Universe is dark energy dominated as well as accelerating. Here,
the presence of dark energy has been established by including a time-dependent
term in the Einstein's field equations. This model is compatible with
the idea of an accelerating Universe so far as the value of the deceleration
parameter is concerned. Possibility of a change in sign of the deceleration
parameter is also discussed. The impact of considering the speed of light as
variable in the field equations has also been investigated by using a well
known time-dependent model.Comment: Latex, 9 pages, Major change
Viability of Noether symmetry of F(R) theory of gravity
Canonization of F(R) theory of gravity to explore Noether symmetry is
performed treating R - 6(\frac{\ddot a}{a} + \frac{\dot a^2}{a^2} +
\frac{k}{a^2}) = 0 as a constraint of the theory in Robertson-Walker
space-time, which implies that R is taken as an auxiliary variable. Although it
yields correct field equations, Noether symmetry does not allow linear term in
the action, and as such does not produce a viable cosmological model. Here, we
show that this technique of exploring Noether symmetry does not allow even a
non-linear form of F(R), if the configuration space is enlarged by including a
scalar field in addition, or taking anisotropic models into account.
Surprisingly enough, it does not reproduce the symmetry that already exists in
the literature (A. K. Sanyal, B. Modak, C. Rubano and E. Piedipalumbo,
Gen.Relativ.Grav.37, 407 (2005), arXiv:astro-ph/0310610) for scalar tensor
theory of gravity in the presence of R^2 term. Thus, R can not be treated as an
auxiliary variable and hence Noether symmetry of arbitrary form of F(R) theory
of gravity remains obscure. However, there exists in general, a conserved
current for F(R) theory of gravity in the presence of a non-minimally coupled
scalar-tensor theory (A. K. Sanyal, Phys.Lett.B624, 81 (2005),
arXiv:hep-th/0504021 and Mod.Phys.Lett.A25, 2667 (2010), arXiv:0910.2385
[astro-ph.CO]). Here, we briefly expatiate the non-Noether conserved current
and cite an example to reveal its importance in finding cosmological solution
for such an action, taking F(R) \propto R^{3/2}.Comment: 16 pages, 1 figure. appears in Int J Theoretical Phys (2012
Measurement of Hadron and Lepton-Pair Production at 130GeV < \sqrt{s} < 189 GeV at LEP
We report on measurements of e+e- annihilation into hadrons and lepton pairs.
The data have been collected with the L3 detector at LEP at centre-of-mass
energies between 130 and 189 GeV. Using a total integrated luminosity of 243.7
pb^-1, 25864 hadronic and 8573 lepton-pair events are selected for the
measurement of cross sections and leptonic forward-backward asymmetries. The
results are in good agreement with Standard Model predictions
Measurement of the Tau Branching Fractions into Leptons
Using data collected with the L3 detector near the Z resonance, corresponding
to an integrated luminosity of 150pb-1, the branching fractions of the tau
lepton into electron and muon are measured to be
B(tau->e nu nu) = (17.806 +- 0.104 (stat.) +- 0.076 (syst.)) %,
B(tau->mu nu nu) = (17.342 +- 0.110 (stat.) +- 0.067 (syst.)) %.
From these results the ratio of the charged current coupling constants of the
muon and the electron is determined to be g_mu/g_e = 1.0007 +- 0.0051. Assuming
electron-muon universality, the Fermi constant is measured in tau lepton decays
as G_F = (1.1616 +- 0.0058) 10^{-5} GeV^{-2}. Furthermore, the coupling
constant of the strong interaction at the tau mass scale is obtained as
alpha_s(m_tau^2) = 0.322 +- 0.009 (exp.) +- 0.015 (theory)
Higgs Candidates in e+e- Interactions at root(s) = 206.6 GeV
In a search for the Standard Model Higgs boson, carried out on 212.5 pb-1 of
data collected by the L3 detector at the highest LEP centre-of-mass energies,
including 116.5 pb-1 above root(s) = 206GeV, an excess of candidates for the
process e+e- -> Z* -> HZ is found for Higgs masses near 114.5GeV. We present an
analysis of our data and the characteristics of our strongest candidates.Comment: Footnote added, matches the version to be published in Physics
Letters
Search for Manifestations of New Physics in Fermion-Pair Production at LEP
The measurements of hadron and lepton-pair production cross sections and
leptonic forward-backward asymmetries performed with the L3 detector at
centre-of-mass energies between 130 GeV and 189 GeV are used to search for new
physics phenomena such as: contact interactions, exchange of virtual
leptoquarks, scalar quarks and scalar neutrinos, effects of TeV strings in
models of quantum gravity with large extra dimensions and non-zero sizes of the
fermions. No evidence for these phenomena is found and new limits on their
parameters are set
Measurement of the Lifetime of the Tau Lepton
The tau lepton lifetime is measured with the L3 detector at LEP using the
complete data taken at centre-of-mass energies around the Z pole resulting in
tau_tau = 293.2 +/- 2.0 (stat) +/- 1.5 (syst) fs. The comparison of this result
with the muon lifetime supports lepton universality of the weak charged current
at the level of six per mille. Assuming lepton universality, the value of the
strong coupling constant, alpha_s is found to be alpha_s(m_tau^2) = 0.319 +/-
0.015(exp.) +/- 0.014 (theory)
Search for a Higgs Boson Decaying to Weak Boson Pairs at LEP
A Higgs particle produced in association with a Z boson and decaying into
weak boson pairs is searched for in 336.4 1/pb of data collected by the L3
experiment at LEP at centre-of-mass energies from 200 to 209 GeV. Limits on the
branching fraction of the Higgs boson decay into two weak bosons as a function
of the Higgs mass are derived. These results are combined with the L3 search
for a Higgs boson decaying to photon pairs. A Higgs produced with a Standard
Model e+e- --> Zh cross section and decaying only into electroweak boson pairs
is excluded at 95% CL for a mass below 107 GeV
Search for Heavy Neutral and Charged Leptons in e+ e- Annihilation at LEP
A search for exotic unstable neutral and charged heavy leptons as well as for
stable charged heavy leptons is performed with the L3 detector at LEP.
Sequential, vector and mirror natures of heavy leptons are considered. No
evidence for their existence is found and lower limits on their masses are set
Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV
A search for a Higgs boson decaying into invisible particles is performed
using the data collected at LEP by the L3 experiment at centre-of-mass energies
of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1
and 176.4 pb^-1. The observed candidates are consistent with the expectations
from Standard Model processes. In the hypothesis that the production cross
section of this Higgs boson equals the Standard Model one and the branching
ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set
at 95% confidence level
- …
