1,263 research outputs found

    Effect of B2O3 and P2O5 on fluorosilicic mica glass-ceramic sintering process

    Get PDF
    To study the effect of B2O3 and P2O5 on fluorosilicic mica glass-ceramic sintering process, six sets of K2O-MgO-SiO2-F glasses were prepared by using B2O3 and P2O5 as sintering aid, respectively. Green bodies of the glass powder were formed by gel casting and sintered at 800, 850, 900, 950, 1000oC for 6 hours, resectively. The sintering and crystallization behavior were studied by thermal shrinkage , X-ray diffraction and SEM. The results showed that the shrinkage rate of the glass with 2wt% B2O3 and P2O5 was highest, while the rate of the glass with 5wt% P2O5 was lowest. An additional crystal other than fluorosilicic mica was precipitated in the glass ceramics generated by sintering of glass powder. The present results confirmed that the glass powder of pure K2O-MgO-SiO2-Fsystem had poor sinterability, while glass powder with minor addition of P2O5 and/or B2O3 showed good sinterability. This result was also verified by SEM

    Moderate deviation principle for ergodic Markov chain. Lipschitz summands

    Full text link
    For 1/2<α<1{1/2}<\alpha<1, we propose the MDP analysis for family Snα=1nα∑i=1nH(Xi−1),n≄1, S^\alpha_n=\frac{1}{n^\alpha}\sum_{i=1}^nH(X_{i-1}), n\ge 1, where (Xn)n≄0(X_n)_{n\ge 0} be a homogeneous ergodic Markov chain, Xn∈RdX_n\in \mathbb{R}^d, when the spectrum of operator PxP_x is continuous. The vector-valued function HH is not assumed to be bounded but the Lipschitz continuity of HH is required. The main helpful tools in our approach are Poisson's equation and Stochastic Exponential; the first enables to replace the original family by 1nαMn\frac{1}{n^\alpha}M_n with a martingale MnM_n while the second to avoid the direct Laplace transform analysis

    Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet

    Full text link
    We examine the spin-SS quantum Heisenberg magnet with Gaussian-random, infinite-range exchange interactions. The quantum-disordered phase is accessed by generalizing to SU(M)SU(M) symmetry and studying the large MM limit. For large SS the ground state is a spin-glass, while quantum fluctuations produce a spin-fluid state for small SS. The spin-fluid phase is found to be generically gapless - the average, zero temperature, local dynamic spin-susceptibility obeys \bar{\chi} (\omega ) \sim \log(1/|\omega|) + i (\pi/2) \mbox{sgn} (\omega) at low frequencies. This form is identical to the phenomenological `marginal' spectrum proposed by Varma {\em et. al.\/} for the doped cuprates.Comment: 13 pages, REVTEX, 2 figures available by request from [email protected]

    How organizational cognitive neuroscience can deepen understanding of managerial decision-making:a review of the recent literature and future directions

    Get PDF
    There is growing interest in exploring the potential links between human biology and management and organization studies, which is bringing greater attention to bear on the place of mental processes in explaining human behaviour and effectiveness. The authors define this new field as organizational cognitive neuroscience (OCN), which is in the exploratory phase of its emergence and diffusion. It is clear that there are methodological debates and issues associated with OCN research, and the aim of this paper is to illuminate these concerns, and provide a roadmap for rigorous and relevant future work in the area. To this end, the current reach of OCN is investigated by the systematic review methodology, revealing three clusters of activity, covering the fields of economics, marketing and organizational behaviour. Among these clusters, organizational behaviour seems to be an outlier, owing to its far greater variety of empirical work, which the authors argue is largely a result of the plurality of research methods that have taken root within this field. Nevertheless, all three clusters contribute to a greater understanding of the biological mechanisms that mediate choice and decision-making. The paper concludes that OCN research has already provided important insights regarding the boundaries surrounding human freedom to act in various domains and, in turn, self-determination to influence the workplace. However, there is much to be done, and emerging research of significant interest is highlighted

    SO(3) Gauge Symmetry and Neutrino-Lepton Flavor Physics

    Full text link
    Based on the SO(3) gauge symmetry for three family leptons and general see-saw mechanism, we present a simple scheme that allows three nearly degenerate Majorana neutrino masses needed for hot dark matter. The vacuum structure of the spontaneous SO(3) symmetry breaking can automatically lead to a maximal CP-violating phase. Thus the current neutrino data on both the atmospheric neutrino anomaly and solar neutrino deficit can be accounted for via maximal mixings without conflict with the current data on the neutrinoless double beta decay. The model also allows rich interesting phenomena on lepton flavor violations.Comment: 10 pages, Revtex, no figures, minor changes and references added, the version to appear in Phys. Rev.

    Quantum field theory of metallic spin glasses

    Full text link
    We introduce an effective field theory for the vicinity of a zero temperature quantum transition between a metallic spin glass (``spin density glass'') and a metallic quantum paramagnet. Following a mean field analysis, we perform a perturbative renormalization-group study and find that the critical properties are dominated by static disorder-induced fluctuations, and that dynamic quantum-mechanical effects are dangerously irrelevant. A Gaussian fixed point is stable for a finite range of couplings for spatial dimensionality d>8d > 8, but disorder effects always lead to runaway flows to strong coupling for d≀8d \leq 8. Scaling hypotheses for a {\em static\/} strong-coupling critical field theory are proposed. The non-linear susceptibility has an anomalously weak singularity at such a critical point. Although motivated by a perturbative study of metallic spin glasses, the scaling hypotheses are more general, and could apply to other quantum spin glass to paramagnet transitions.Comment: 16 pages, REVTEX 3.0, 2 postscript figures; version contains reference to related work in cond-mat/950412

    Uncertainties of the Inclusive Higgs Production Cross Section at the Tevatron and the LHC

    Full text link
    We study uncertainties of the predicted inclusive Higgs production cross section due to the uncertainties of parton distribution functions (PDF). Particular attention is given to bbH Yukawa coupling enhanced production mechanisms in beyond SM scenarios, such as MSSM. The PDF uncertainties are determined by the robust Lagrange Multiplier method within the CTEQ global analysis framework. We show that PDF uncertainties dominate over theoretical uncertainties of the perturbative calculation (usually estimated by the scale dependence of the calculated cross sections), except for low Higgs masses at LHC. Thus for the proper interpretation of any Higgs signal, and for better understanding of the underlying electroweak symmetry breaking mechanism, it is important to gain better control of the uncertainties of the PDFs.Comment: LaTeX, JHEP, 19 pages, 14 figure

    Hadronic Spectral Functions in Lattice QCD

    Get PDF
    QCD spectral functions of hadrons in the pseudo-scalar and vector channels are extracted from lattice Monte Carlo data of the imaginary time Green's functions. The maximum entropy method works well for this purpose, and the resonance and continuum structures in the spectra are obtained in addition to the ground state peaks.Comment: 4 pages, 3 eps-figures, revtex (minor modifications in the text and an added reference). To appear in Physical Review D Rapid Communication

    Pigment epithelium-derived factor in the monkey retinal pigment epithelium and interphotoreceptor matrix: apical secretion and distribution

    Get PDF
    Pigment epithelium-derived factor (PEDF) is an extracellular protein derived from the retinal pigment epithelium (RPE), a tissue formed by polarized cells that release growth and trophic factors in a directional fashion. We have investigated the distribution and directional release of PEDF protein by the monkey RPE. We established primary cultures of monkey RPE cells that expressed the PEDF gene, and that synthesized and secreted the PEDF protein. Northern analysis of RPE cultures and monkey ocular tissues showed that PEDF transcripts were highly expressed in RPE as compared with several other monkey ocular tissues, being even more abundant in cultured cells than they were in the native RPE. The differentiated RPE cells in culture secreted protein that shared the immunological, biochemical and biological characteristics of PEDF. The overall PEDF levels in the RPE conditioned media reached 6.5 mg ml- after 8 days in culture (i.e. 1.1 pg of PEDF per RPE cell). RPE cells were cultivated on permeable supports as monolayers forming a barrier between apical and basal compartments. Apical and basal culture media were sampled at three or four-day intervals for 18 cycles, and the PEDF content was quantified. Most of the PEDF protein was significantly higher in the apical than in the basal medium (>4 times) at the initial recovery intervals, to be detected only in the apical medium at the latter intervals. In the native monkey eye, the concentration of soluble PEDF in the interphotoreceptor matrix (144 nM) was 7-fold and 25-fold greater than in vitreous and aqueous, respectively. PEDF was abundant in the interphotoreceptor matrix surrounding rod and cone outer segments, and was detectable at lower levels in the RPE as visualized by confocal microscopy. We concluded that PEDF synthesized by the RPE is secreted preferentially from the apical surface and is distributed apically to the RPE bordering the outer segments of photoreceptors. PEDF can be a useful marker for RPE polarization and differentiation. The polarization of RPE may be an important mechanism to control PEDF secretion and our results offer interesting possibilities on regulation of PEDF

    A Possibility to Measure CP-Violating Effects in the Decay K --> mu nu gamma

    Get PDF
    It is argued that a precise measurement of the transverse component of the muon spin in the decay K --> mu nu gamma makes it possible to obtain more stringent limits on CP-violating parameters of the leptoquark, SUSY and left-right symmetric models. The results of the calculations of the CP-even transverse component of the muon spin in the decay K --> mu nu gamma due to the final-state electromagnetic interactions are presented. The weighted average of the transverse component of the muon spin comprises 2.3 times 10^{-4}.Comment: 12 pages, 4 figures; the overall sign changed, typos correcte
    • 

    corecore