1,787 research outputs found
On Witten's Instability and Winding Tachyons
We investigate, from a spacetime perspective, some aspects of Horowitz's
recent conjecture that black strings may catalyze the decay of Kaluza-Klein
spacetimes into a bubble of nothing. We identify classical configurations that
interpolate between flat space and the bubble, and discuss the energetics of
the transition. We investigate the effects of winding tachyons on the size and
shape of the barrier and find no evidence at large compactification radius that
tachyons enhance the tunneling rate. For the interesting radii, of order the
string scale, the question is difficult to answer due to the failure of the
expansion.Comment: 15 pages, 2 figures, Late
Modeling driver control behavior in both routine and near-accident driving
Building on ideas from contemporary neuroscience, a framework is proposed in which driversâ steering and pedal behavior is modeled as a series of individual control adjustments, triggered after accumulation of sensory evidence for the need of an adjustment, or evidence that a previous or ongoing adjustment is not achieving the intended results. Example simulations are provided. SpeciïŹcally, it is shown that evidence accumulation can account for previously unexplained variance in looming detection thresholds and brake onset timing. It is argued that the proposed framework resolves a discrepancy in the current driver modeling literature, by explaining not only the short-latency, well-tuned, closed-loop type of control of routine driving, but also the degradation into long-latency, ill-tuned open-loop control in more rare, unexpected, and urgent situations such as near-accidents
Protogalactic Extension of the Parker Bound
We extend the Parker bound on the galactic flux of magnetic
monopoles. By requiring that a small initial seed field must survive the
collapse of the protogalaxy, before any regenerative dynamo effects become
significant, we develop a stronger bound. The survival and continued growth of
an initial galactic seed field G demand that . For a given
monopole mass, this bound is four and a half orders of magnitude more stringent
than the previous `extended Parker bound', but is more speculative as it
depends on assumptions about the behavior of magnetic fields during
protogalactic collapse. For monopoles which do not overclose the Universe
(), the maximum flux allowed is now cm^{-2}
s^{-1} sr^{-1}, a factor of 150 lower than the maximum flux allowed by the
extended Parker bound.Comment: 9 pages, 1 eps figur
Clinically significant chronic liver disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study
Background: Type 2 diabetes is an independent risk factor for chronic liver disease, however disease burden estimates and knowledge of prognostic indicators are lacking in community populations.
Aims: To describe the prevalence and incidence of clinically significant chronic liver disease amongst community-based older people with Type 2 diabetes and to determine risk factors which might assist in discriminating patients with unknown prevalent or incident disease.
Design: Prospective cohort study.
Methods: Nine hundred and thirty-nine participants in the Edinburgh Type 2 Diabetes Study underwent investigation including liver ultrasound and non-invasive measures of non-alcoholic steatohepatitis (NASH), hepatic fibrosis and systemic inflammation. Over 6-years, cases of cirrhosis and hepatocellular carcinoma were collated from multiple sources.
Results: Eight patients had known prevalent disease with 13 further unknown cases identified (prevalence 2.2%) and 15 incident cases (IR 2.9/1000 person-years). Higher levels of systemic inflammation, NASH and hepatic fibrosis markers were associated with both unknown prevalent and incident clinically significant chronic liver disease (all Pâ<â0.001).
Conclusions: Our study investigations increased the known prevalence of clinically significant chronic liver disease by over 150%, confirming the suspicion of a large burden of undiagnosed disease. The disease incidence rate was lower than anticipated but still much higher than the general population rate. The ability to identify patients both with and at risk of developing clinically significant chronic liver disease allows for early intervention and clinical monitoring strategies. Ongoing work, with longer follow-up, including analysis of rates of liver function decline, will be used to define optimal risk prediction tools
Association of MRI T1 relaxation time with neuropsychological test performance in manganese- exposed welders
This study examines the results of neuropsychological testing of 26 active welders and 17 similar controls and their relationship to welders' shortened MRI T1 relaxation time, indicative of increased brain manganese (Mn) accumulation. Welders were exposed to Mn for an average duration of 12.25 years to average levels of Mn in air of 0.11±0.05mg/m3. Welders scored significantly worse than controls on Fruit Naming and the Parallel Lines test of graphomotor tremor. Welders had shorter MRI T1 relaxation times than controls in the globus pallidus, substantia nigra, caudate nucleus, and the anterior prefrontal lobe. 63% of the variation in MRI T1 relaxation times was accounted for by exposure group. In welders, lower relaxation times in the caudate nucleus and substantia nigra were associated with lower neuropsychological test performance on tests of verbal fluency (Fruit Naming), verbal learning, memory, and perseveration (WHO-UCLA AVLT). Results indicate that verbal function may be one of the first cognitive domains affected by brain Mn deposition in welders as reflected by MRI T1 relaxation times
Hyperon semileptonic decays and quark spin content of the proton
We investigate the hyperon semileptonic decays and the quark spin content of
the proton taking into account flavor SU(3) symmetry breaking.
Symmetry breaking is implemented with the help of the chiral quark-soliton
model in an approach, in which the dynamical parameters are fixed by the
experimental data for six hyperon semileptonic decay constants. As a result we
predict the unmeasured decay constants, particularly for ,
which will be soon measured and examine the effect of the SU(3) symmetry
breaking on the spin content of the proton. Unfortunately
large experimental errors of decays propagate in our analysis making
and practically undetermined. We conclude that
statements concerning the values of these two quantities, which are based on
the exact SU(3) symmetry, are premature. We stress that the meaningful results
can be obtained only if the experimental errors for the decays are
reduced.Comment: The final version accepted for publication in Phys. Rev. D. 18 pages,
RevTex is used with 4 figures include
Discovery and Observations of ASASSN-13db, an EX Lupi-Type Accretion Event on a Low-Mass T Tauri Star
We discuss ASASSN-13db, an EX Lupi-type ("EXor") accretion event on the young
stellar object (YSO) SDSS J051011.01032826.2 (hereafter SDSSJ0510)
discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using
archival photometric data of SDSSJ0510 we construct a pre-outburst spectral
energy distribution (SED) and find that it is consistent with a low-mass class
II YSO near the Orion star forming region ( pc). We present
follow-up photometric and spectroscopic observations of the source after the
5.4 magnitude outburst that began in September 2013 and ended
in early 2014. These data indicate an increase in temperature and luminosity
consistent with an accretion rate of yr,
three or more orders of magnitude greater than in quiescence. Spectroscopic
observations show a forest of narrow emission lines dominated by neutral
metallic lines from Fe I and some low-ionization lines. The properties of
ASASSN-13db are similar to those of the EXor prototype EX Lupi during its
strongest observed outburst in late 2008.Comment: 14 pages, 4 figures, 1 table. Updated May 2014 to reflect changes in
the final version published in ApJL. Photometric data presented in this
submission are included as ancillary files. For a brief video explaining this
paper, see http://youtu.be/yRCCrNJnvt
Deuteron Electroweak Disintegration
We study the deuteron electrodisintegration with inclusion of the neutral
currents focusing on the helicity asymmetry of the exclusive cross section in
coplanar geometry. We stress that a measurement of this asymmetry in the quasi
elastic region is of interest for an experimental determination of the weak
form factors of the nucleon, allowing one to obtain the parity violating
electron neutron asymmetry. Numerically, we consider the reaction at low
momentum transfer and discuss the sensitivity of the helicity asymmetry to the
strangeness radius and magnetic moment. The problems coming from the finite
angular acceptance of the spectrometers are also considered.Comment: 30 pages, Latex, 7 eps figures, submitted to Phys.Rev.C e-mail:
[email protected] , [email protected]
The Effective Field Theory of Inflation
We study the effective field theory of inflation, i.e. the most general
theory describing the fluctuations around a quasi de Sitter background, in the
case of single field models. The scalar mode can be eaten by the metric by
going to unitary gauge. In this gauge, the most general theory is built with
the lowest dimension operators invariant under spatial diffeomorphisms, like
g^{00} and K_{mu nu}, the extrinsic curvature of constant time surfaces. This
approach allows us to characterize all the possible high energy corrections to
simple slow-roll inflation, whose sizes are constrained by experiments. Also,
it describes in a common language all single field models, including those with
a small speed of sound and Ghost Inflation, and it makes explicit the
implications of having a quasi de Sitter background. The non-linear realization
of time diffeomorphisms forces correlation among different observables, like a
reduced speed of sound and an enhanced level of non-Gaussianity.Comment: 26 pages. v2: minor corrections, JHEP published versio
Parity violating target asymmetry in electron - proton scattering
We analyze the parity-violating (PV) components of the analyzing power in
elastic electron-proton scattering and discuss their sensitivity to the strange
quark contributions to the proton weak form factors. We point out that the
component of the analyzing power along the momentum transfer is independent of
the electric weak form factor and thus compares favorably with the PV beam
asymmetry for a determination of the strangeness magnetic moment. We also show
that the transverse component could be used for constraining the strangeness
radius. Finally, we argue that a measurement of both components could give
experimental information on the strangeness axial charge.Comment: 24 pages, Latex, 5 eps figures, submitted to Phys.Rev.
- âŠ