1,110 research outputs found
Laboratory simulation of cometary x rays using a high-resolution microcalorimeter
X-ray emission following charge exchange has been studied on the University
of California Lawrence Livermore National Laboratory electron beam ion traps
EBIT-I and EBIT-II using a high-resolution microcalorimeter. The measured
spectra include the K-shell emission from hydrogenlike and heliumlike C, N, O,
and Ne needed for simulations of cometary x-ray emission. A comparison of the
spectra produced in the interaction of O8+ with N2 and CH4 is presented that
illustrates the dependence of the observed spectrum on the interaction gas.Comment: 11 pages, 2 figure
Computational steering in realitygrid
The RealityGrid project (http://www.realitygrid.org) aims both to enable the discovery of new materials through integrated experiments and to understand the behaviour of physical systems based on the properties of their microscopic components using diverse simulation methods spanning many time and length scales. A central theme of RealityGrid is the facilitation of distributed and collaborative steering of parallel simulation codes and simultaneous on-line, high-end visualisation. In this paper, we review the motivations for computational steering and introduce the RealityGrid steering library and associated software. We then outline the capabilities of the library and describe the service-oriented architecture of the latest implementation, in which the steering controls of the application are exposed through an OGSI-compliant Grid service
Thermal Transport Properties of Grey Cast Irons
Thermal diffusivity and thermal conductivity of grey cast iron have been measured as a function of graphite flake morphology, chemical composition, and position in a finished brake rotor. Cast iron samples used for this investigation were cut from ``step block`` castings designed to produce iron with different graphite flake morphologies resulting from different cooling rates. Samples were also machined from prototype alloys and from production brake rotors representing a variation in foundry practice. Thermal diffusivity was measured at room and elevated temperatures via the flash technique. Heat capacity of selected samples was measured with differential scanning calorimetry, and these results were used to calculate the thermal conductivity. Microstructure of the various cast iron samples was quantified by standard metallography and image analysis, and the chemical compositions were determined by optical emission spectroscopy
A New Approach to Systematic Uncertainties and Self-Consistency in Helium Abundance Determinations
Tests of big bang nucleosynthesis and early universe cosmology require
precision measurements for helium abundance determinations. However, efforts to
determine the primordial helium abundance via observations of metal poor H II
regions have been limited by significant uncertainties. This work builds upon
previous work by providing an updated and extended program in evaluating these
uncertainties. Procedural consistency is achieved by integrating the hydrogen
based reddening correction with the helium based abundance calculation, i.e.,
all physical parameters are solved for simultaneously. We include new atomic
data for helium recombination and collisional emission based upon recent work
by Porter et al. and wavelength dependent corrections to underlying absorption
are investigated. The set of physical parameters has been expanded here to
include the effects of neutral hydrogen collisional emission. Because of a
degeneracy between the solutions for density and temperature, the precision of
the helium abundance determinations is limited. Also, at lower temperatures (T
\lesssim 13,000 K) the neutral hydrogen fraction is poorly constrained
resulting in a larger uncertainty in the helium abundances. Thus the derived
errors on the helium abundances for individual objects are larger than those
typical of previous studies. The updated emissivities and neutral hydrogen
correction generally raise the abundance. From a regression to zero
metallicity, we find Y_p as 0.2561 \pm 0.0108, in broad agreement with the WMAP
result. Tests with synthetic data show a potential for distinct improvement,
via removal of underlying absorption, using higher resolution spectra. A small
bias in the abundance determination can be reduced significantly and the
calculated helium abundance error can be reduced by \sim 25%.Comment: 51 pages, 13 figure
Discovery of Novel Term Associations in a Document Collection
Non peer reviewe
Mapping systematic errors in helium abundance determinations using Markov Chain Monte Carlo
Monte Carlo techniques have been used to evaluate the statistical and
systematic uncertainties in the helium abundances derived from extragalactic
H~II regions. The helium abundance is sensitive to several physical parameters
associated with the H~II region. In this work, we introduce Markov Chain Monte
Carlo (MCMC) methods to efficiently explore the parameter space and determine
the helium abundance, the physical parameters, and the uncertainties derived
from observations of metal poor nebulae. Experiments with synthetic data show
that the MCMC method is superior to previous implementations (based on flux
perturbation) in that it is not affected by biases due to non-physical
parameter space. The MCMC analysis allows a detailed exploration of
degeneracies, and, in particular, a false minimum that occurs at large values
of optical depth in the He~I emission lines. We demonstrate that introducing
the electron temperature derived from the [O~III] emission lines as a prior, in
a very conservative manner, produces negligible bias and effectively eliminates
the false minima occurring at large optical depth. We perform a frequentist
analysis on data from several "high quality" systems. Likelihood plots
illustrate degeneracies, asymmetries, and limits of the determination. In
agreement with previous work, we find relatively large systematic errors,
limiting the precision of the primordial helium abundance for currently
available spectra.Comment: 25 pages, 11 figure
The TeraGyroid Experiment
The TeraGyroid experiment at SC 03 addressed a large-scale problem of genuine scientific interest at the same time as showing how intercontinental grids enable new paradigms for collaborative computational science that can dramatically reduce the time to insight. TeraGyroid used computational steering to accelerate the exploration of parameter space in condensed matter simulations. The scientific objective was to study the self-assembly, defect pathways and dynamics of liquid crystalline cubic gyroid mesophases using the largest set of lattice-Boltzmann (LB) simulations ever performed, involving in some cases lattices of over one billion sites and for highly extended simulation times. We describe the application in sufficient detail to reveal how it uses the grid to support interactions between its distributed parts, where the interfaces exist between the application and the middleware infrastructure, what grid services and capabilities are used, and why important design decisions were made. We also describe how the resources of highend computing services were federated with the UK e-Science Grid and the US TeraGrid to form the TeraGyroid testbed, and summarise the lessons learned during the experiment
Efeitos da densidade de população de plantas na cultura de couve-flor (Brassica oleracea L. var. botrytis)
An experiment was carried out to study the effects of the following population densities cauliflowers (plants per ha): 20,833 (0.60 m x 0.80 m), 25,641 (0.60 m x 0.65 m), ....37.037 (0.60 m x 0.45 m) , 55.555 (.0.60 m x 0.30 m), and 111,111 (0,60 m x 0,15 m) ; variety Snow ball. It was concluded that the effects of plant population density are greater on curd quality (weight and size) than on production per ha. The best plant population density to produce cauliflowers curd for Brazil market is from 20,000 to 25,000 plants/ha while for mini-curd is above 55,000 plants/ha.O experimento foi instalado na área experimental do Setor de Horticultura da ESALQ. (Piracicaba, SP), em um Latossol Roxo série "Luiz de Queiroz", em março de 1977, considerando as seguintes densidades de população: 20.833 plantas/ha (0,60 m x 0,80m), .. 25.641 plantas/ha (0,60 m x 0,65 m), 37.037 plantas/ha (..0.,60 m x 0,45 ml, 55.550 plantas/ha (,06Q m x 0,30 ,) e 111.111 plantas/ ha (0,60 m x 0,15 m). A partir dos resultados obtidos e para as condições do experimento concluiu-se que a densidade de população sobre a produção de couve-flor afeta mais a qualidade da cabeça (peso e tamanho), enquanto que o rendimento por área é pouco afetado. Para as condições do nosso mercado, a densidade ótima deve estar entre 20.000 a 25.000 plantas por ha e para a produção de mini-couve-flor mais de 55.000 plantas por ha, paraocultivar Bola de Neve
A realistic example of chaotic tunneling: The hydrogen atom in parallel static electric and magnetic fields
Statistics of tunneling rates in the presence of chaotic classical dynamics
is discussed on a realistic example: a hydrogen atom placed in parallel uniform
static electric and magnetic fields, where tunneling is followed by ionization
along the fields direction. Depending on the magnetic quantum number, one may
observe either a standard Porter-Thomas distribution of tunneling rates or, for
strong scarring by a periodic orbit parallel to the external fields, strong
deviations from it. For the latter case, a simple model based on random matrix
theory gives the correct distribution.Comment: Submitted to Phys. Rev.
Dilepton Spectra from Decays of Light Unflavored Mesons
The invariant mass spectrum of the and pairs
from decays of light unflavored mesons with masses below the -meson mass to final states containing along with a dilepton pair one
photon, one meson, and two mesons are calculated within the framework of the
effective meson theory. The results can be used for simulations of the dilepton
spectra in heavy-ion collisions and for experimental searches of dilepton meson
decays.Comment: 73 pages, 19 figures, 3 tables, REVTeX, new references adde
- …