258 research outputs found
A Variational Procedure for Time-Dependent Processes
A simple variational Lagrangian is proposed for the time development of an
arbitrary density matrix, employing the "factorization" of the density. Only
the "kinetic energy" appears in the Lagrangian. The formalism applies to pure
and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport
theory, etc. It recaptures the Least Dissipation Function condition of
Rayleigh-Onsager {\bf and in practical applications is flexible}. The
variational proposal is tested on a two level system interacting that is
subject, in one instance, to an interaction with a single oscillator and, in
another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure
A quantum mechanical description of the experiment on the observation of gravitationally bound states
Quantum states in the Earth's gravitational field were observed, when
ultra-cold neutrons fall under gravity. The experimental results can be
described by the quantum mechanical scattering model as it is presented here.
We also discuss other geometries of the experimental setup which correspond to
the absence or the reversion of gravity. Since our quantum mechanical model
describes, particularly, the experimentally realized situation of reversed
gravity quantitatively, we can practically rule out alternative explanations of
the quantum states in terms of pure confinement effects.Comment: LaTeX, 10 pages, 4 figures, v2: references adde
The Vlasov limit and its fluctuations for a system of particles which interact by means of a wave field
In two recent publications [Commun. PDE, vol.22, p.307--335 (1997), Commun.
Math. Phys., vol.203, p.1--19 (1999)], A. Komech, M. Kunze and H. Spohn studied
the joint dynamics of a classical point particle and a wave type generalization
of the Newtonian gravity potential, coupled in a regularized way. In the
present paper the many-body dynamics of this model is studied. The Vlasov
continuum limit is obtained in form equivalent to a weak law of large numbers.
We also establish a central limit theorem for the fluctuations around this
limit.Comment: 68 pages. Smaller corrections: two inequalities in sections 3 and two
inequalities in section 4, and definition of a Banach space in appendix A1.
Presentation of LLN and CLT in section 4.3 improved. Notation improve
Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions
Excess contributions to the free energy due to interfaces occur for many
problems encountered in the statistical physics of condensed matter when
coexistence between different phases is possible (e.g. wetting phenomena,
nucleation, crystal growth, etc.). This article reviews two methods to estimate
both interfacial free energies and line tensions by Monte Carlo simulations of
simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid
exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is
based on thermodynamic integration. This method is useful to study flat and
inclined interfaces for Ising lattices, allowing also the estimation of line
tensions of three-phase contact lines, when the interfaces meet walls (where
"surface fields" may act). A generalization to off-lattice systems is described
as well.
The second method is based on the sampling of the order parameter
distribution of the system throughout the two-phase coexistence region of the
model. Both the interface free energies of flat interfaces and of (spherical or
cylindrical) droplets (or bubbles) can be estimated, including also systems
with walls, where sphere-cap shaped wall-attached droplets occur. The
curvature-dependence of the interfacial free energy is discussed, and estimates
for the line tensions are compared to results from the thermodynamic
integration method. Basic limitations of all these methods are critically
discussed, and an outlook on other approaches is given
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Innovative organotypic in vitro models for safety assessment: aligning with regulatory requirements and understanding models of the heart, skin, and liver as paradigms
The development of improved, innovative models for the detection of toxicity of drugs, chemicals, or chemicals in cosmetics is crucial to efficiently bring new products safely to market in a cost-effective and timely manner. In addition, improvement in models to detect toxicity may reduce the incidence of unexpected post-marketing toxicity and reduce or eliminate the need for animal testing. The safety of novel products of the pharmaceutical, chemical, or cosmetics industry must be assured; therefore, toxicological properties need to be assessed. Accepted methods for gathering the information required by law for approval of substances are often animal methods. To reduce, refine, and replace animal testing, innovative organotypic in vitro models have emerged. Such models appear at different levels of complexity ranging from simpler, self-organized three-dimensional (3D) cell cultures up to more advanced scaffold-based co-cultures consisting of multiple cell types. This review provides an overview of recent developments in the field of toxicity testing with in vitro models for three major organ types: heart, skin, and liver. This review also examines regulatory aspects of such models in Europe and the UK, and summarizes best practices to facilitate the acceptance and appropriate use of advanced in vitro models
A Study of the -component of the wave-function in light nuclei
We have measured cross sections for the reactions on
, , and in quasi-free
kinematics at incident pion beam energy 500 MeV. An enhancement of the
cross section in this kinematics is observed. If this is
interpreted as due to quasi-free scattering from pre-existing
components of the nuclear wave function, the extracted probabilities are in
agreement with theoretical expectations.Comment: 3 pages, 3 figures, 1 tabl
Does It Really Work? Re-Assessing the Impact of Pre-Departure Cross-Cultural Training on Expatriate Adjustment
Cultural adjustment is considered to be a prerequisite for expatriate success abroad. One way to enhance adjustment is to provide employees with knowledge and awareness of appropriate norms and behaviors of the host country through cross-cultural training (CCT). This article analyzes the impact of pre-departure CCT on expatriate adjustment and focuses on variations in participation, length and the comprehensiveness of training. Unlike previous research, the study focuses on the effectiveness of pre-departure CCT for non-US employees expatriated to a broad range of host country settings. Employing data from 339 expatriates from 20 German Multinational Corporations (MNCs) the study finds CCT has little if any effect on general, interactional or work setting expatriate adjustment. However, a significant impact of foreign language competence was found for all three dimensions of expatriate adjustment. We used interviews with 20 expatriates to supplement our discussion and provide further implications for practice
A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda
- …
