28 research outputs found
Wearable device to assist independent living.
Older people increasingly want to remain living independently in their own homes. The aim of the ENABLE project is to develop a wearable device that can be used both within and outside of the home to support older people in their daily lives and which can monitor their health status, detect potential problems, provide activity reminders and offer communication and alarm services. In order to determine the specifications and functionality required for development of the device user surveys and focus groups were undertaken and use case analysis and scenario modeling carried out. The project has resulted in the development of a wrist worn device and mobile phone combination that can support and assist older and vulnerable wearers with a range of activities and services both inside and outside of their homes. The device is currently undergoing pilot trials in five European countries. The aim of this paper is to describe the ENABLE device, its features and services, and the infrastructure within which it operates
Recommended from our members
ENABLE: a wrist worn device with integrated accessible services to support old people living independently and safely at home
This RTD project, 2007-2009, is partly funded by the European Commission, in Framework Programme 6. It aims to assist elderly people for living well, independently and at case. ENABLE will provide a number of services for elderly people based on the new technology provided by mobile phones. The project is developing a Wrist unit with both integrated and external sensors, and with a radio frequency link to a mobile phone. Dedicated ENABLE software running on the wrist unit and mobile phone makes these services fully accessible for the elderly users. This paper outlines the fundamental motivation and the approach which currently is undertaken in order to collect the more detailed user needs and requirements. The general architecture and the design of the ENABLE system are outlined
Beyond CO2-fixation by Rubisco - an interpretation of 13C/12C variations in tree rings from novel intraseasonal studies on broad-leaf trees
Evidence is presented for a very specific, seasonally recurring tri-phase carbon isotope pattern in tree rings of broad-leaf deciduous tree species. It is derived from highly resolved intra-annual measurements of 13C/12C ratios of wood and cellulose from tree rings of Fagus sylvatica, Populus nigra, Quercus petraea and Morus alba. Investigations on δ13C from buds and leaves of Fagus sylvatica revealed a similar tri-phase δ13C pattern. At the very beginning of a growing season, the δ13C trend of tree rings and foliage shows a marked increase of up to 5‰. The maximum δ13C-value of each vegetation period always occurs in young heterotrophic leaves shortly after bud burst and persistently in the early wood of each tree ring, when growth depends on carbon reserves. Thereafter, δ13C profiles represent the autotrophic stage of the leaves, which show different patterns of variation, by and large characterized by a decline. The minimum δ13C-value always shows up in the late wood of each tree ring. At the very end of each tree ring δ13C-values start rising again. This increase in δ13C marks the gradual switch-over to storage-dependent growth and can also be observed in senescent leaves. Seasonal changes of more than 4‰ were measured, whereas contiguous δ13C values rarely differed from each other by more than 0.3‰. This tri-phase pattern cannot be explained by the common model of carbon isotope fractionation during photosynthesis. It appears to be primarily an indication of seasonal changes in down-stream processes of the carbohydrate metabolism. Environmental influences on the carbon isotope fractionation during photosynthesis are presumably of secondary importance and expressed by certain peculiarities showing up during the autotrophic phase, i.e. the mid-section of the seasonal δ13C pattern