289 research outputs found

    Molecular accretion in the core of the galaxy cluster 2A 0335+096

    Get PDF
    We present adaptive optics-assisted K-band integral field spectroscopy of the central cluster galaxy in 2A 0335+096 (z= 0.0349). The H2 v=1–0 S(1) emission is concentrated in two peaks within 600 pc of the nucleus and fainter but kinematically active emission extends towards the nucleus. The H2 is in a rotating structure which aligns with, and appears to have been accreted from, a stream of Hα emission extending over 14 kpc towards a companion galaxy. The projected rotation axis aligns with the 5 GHz radio lobes. This H2 traces the known 1.2 × 109 M⊙ CO-emitting reservoir; limits on the Brγ emission confirm that the H2 emission is not excited by star formation, which occurs at a rate of less than 1 M⊙ yr−1 in this gas. If its accretion on to the black hole can be regulated whilst star formation remains suppressed, the reservoir could last for at least 1 Gyr; the simultaneous accretion of just ∼5 per cent of the gas could drive a series of active galactic nucleus (AGN) outbursts which offset X-ray cooling in the cluster core for the full ∼1 Gyr. Alternatively, if the regulation is ineffective and the bulk of the H2 accretes within a few orbital periods (25–100 Myr), the resulting 1062 erg outburst would be among the most powerful cluster AGN outbursts known. In either case, these observations further support cold feedback scenarios for AGN heating

    Cold Feedback in Cooling-Flow Galaxy Clusters

    Get PDF
    We put forward an alternative view to the Bondi-driven feedback between heating and cooling of the intra-cluster medium (ICM) in cooling flow galaxies and clusters. We adopt the popular view that the heating is due to an active galactic nucleus (AGN), i.e. a central black hole accreting mass and launching jets and/or winds. We propose that the feedback occurs with the entire cool inner region (5-30 kpc). A moderate cooling flow does exist here, and non-linear over-dense blobs of gas cool fast and are removed from the ICM before experiencing the next major AGN heating event. Some of these blobs may not accrete on the central black hole, but may form stars and cold molecular clouds. We discuss the conditions under which the dense blobs may cool to low temperatures and feed the black hole.Comment: 6 pages, no figures, to appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany

    A comprehensive study of the radio properties of brightest cluster galaxies

    Get PDF
    We examine the radio properties of the brightest cluster galaxies (BCGs) in a large sample of X-ray selected galaxy clusters comprising the Brightest Cluster Sample (BCS), the extended BCS and ROSAT-ESO Flux Limited X-ray cluster catalogues. We have multifrequency radio observations of the BCG using a variety of data from the Australia Telescope Compact Array, Jansky Very Large Array and Very Long Baseline Array telescopes. The radio spectral energy distributions of these objects are decomposed into a component attributed to on-going accretion by the active galactic nuclei (AGN) that we refer to as ‘the core’, and a more diffuse, ageing component we refer to as the ‘non-core’. These BCGs are matched to previous studies to determine whether they exhibit emission lines (principally Hα), indicative of the presence of a strong cooling cluster core. We consider how the radio properties of the BCGs vary with cluster environmental factors. Line emitting BCGs are shown to generally host more powerful radio sources, exhibiting the presence of a strong, distinguishable core component in about 60 per cent of cases. This core component more strongly correlates with the BCG's [O III] 5007 Å line emission. For BCGs in line emitting clusters, the X-ray cavity power correlates with both the extended and core radio emission, suggestive of steady fuelling of the AGN over bubble-rise time-scales in these clusters

    Optical emission line nebulae in galaxy cluster cores 1: the morphological, kinematic and spectral properties of the sample

    Get PDF
    We present an Integral Field Unit survey of 73 galaxy clusters and groups with the VIsible Multi Object Spectrograph on the Very Large Telescope. We exploit the data to determine the H α gas dynamics on kpc scales to study the feedback processes occurring within the dense cluster cores. We determine the kinematic state of the ionized gas and show that the majority of systems (∼2/3) have relatively ordered velocity fields on kpc scales that are similar to the kinematics of rotating discs and are decoupled from the stellar kinematics of the brightest cluster galaxy. The majority of the H α flux (>50 per cent) is typically associated with these ordered kinematics and most systems show relatively simple morphologies suggesting they have not been disturbed by a recent merger or interaction. Approximately 20 per cent of the sample (13/73) have disturbed morphologies which can typically be attributed to active galactic nuclei activity disrupting the gas. Only one system shows any evidence of an interaction with another cluster member. A spectral analysis of the gas suggests that the ionization of the gas within cluster cores is dominated by non-stellar processes, possibly originating from the intracluster medium itself
    • …
    corecore