413 research outputs found

    Interaction potentials, spectroscopy and transport properties of C+(2PJ) and C+(4PJ) with helium

    Get PDF
    We calculate accurate interatomic potentials for the interaction of a singly-charged carbon cation with a helium atom. We employ the RCCSD(T) method, and basis sets of quadruple-zeta and quintuple-zeta quality; each point is counterpoise corrected and extrapolated to the basis set limit. We consider the two lowest C+(2P) and C+(4P) electronic states of the carbon cation, and calculate the interatomic potentials for the terms that arise from these: 2-PI and 2-SIG+, and 4-PI and 4-SIG- , respectively. We additionally calculate the interatomic potentials for the respective spin-orbit levels, and examine the effect on the spectroscopic parameters. Finally, we employ each set of potentials to calculate transport coefficients, and compare these to available data. Critical comments are made in the cases where there are discrepancies between the calculated values and measured data

    Mapping of shape invariant potentials by the point canonical transformation

    Full text link
    In this paper by using the method of point canonical transformation we find that the Coulomb and Kratzer potentials can be mapped to the Morse potential. Then we show that the P\"{o}schl-Teller potential type I belongs to the same subclass of shape invariant potentials as Hulth\'{e}n potential. Also we show that the shape-invariant algebra for Coulomb, Kratzer, and Morse potentials is SU(1,1), while the shape-invariant algebra for P\"{o}schl-Teller type I and Hulth\'{e}n is SU(2)

    Suppression of Parahydrogen Superfluidity in a Doped Nanoscale Bose Fluid Mixture

    Get PDF
    Helium (He4) nanodroplets provide a unique environment to observe the microscopic origins of superfluidity. The search for another superfluid substance has been an ongoing quest in the field of quantum fluids. Nearly two decades ago, experiments on doped parahydrogen (p-H2) clusters embedded in He4 droplets displayed anomalous spectroscopic signatures that were interpreted as a sign of the superfluidity of p-H2 [S. Grebenev et al., Science 289, 1532 (2000)SCIEAS0036-807510.1126/sci

    Unstable particles in matter at a finite temperature: the rho and omega mesons

    Full text link
    Unstable particles (such as the vector mesons) have an important role to play in low mass dilepton production resulting from heavy ion collisions and this has been a subject of several investigations. Yet subtleties, such as the implications of the generalization of the Breit-Wigner formula for nonzero temperature and density, e.g. the question of collisional broadening, the role of Bose enhancement, etc., the possibility of the kinematic opening (or closing) of decay channels due to environmental effects, the problem of double counting through resonant and direct contributions, are often given insufficient emphasis. The present study attempts to point out these features using the rho and omega mesons as illustrative examples. The difference between the two versions of the Vector Meson Dominance Model in the present context is also presented. Effects of non-zero temperature and density, through vector meson masses and decay widths, on dilepton spectra are studied, for concreteness within the framework of a Walecka-type model, though most of the basic issues highlighted apply to other scenarios as well.Comment: text and figures modifie

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Measurement of the CP-Violating Asymmetry Amplitude sin2β\beta

    Get PDF
    We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes
    corecore