564 research outputs found

    Nonexistence of conformally flat slices of the Kerr spacetime

    Get PDF
    Initial data for black hole collisions are commonly generated using the Bowen-York approach based on conformally flat 3-geometries. The standard (constant Boyer-Lindquist time) spatial slices of the Kerr spacetime are not conformally flat, so that use of the Bowen-York approach is limited in dealing with rotating holes. We investigate here whether there exist foliations of the Kerr spacetime that are conformally flat. We limit our considerations to foliations that are axisymmetric and that smoothly reduce in the Schwarzschild limit to slices of constant Schwarzschild time. With these restrictions, we show that no conformally flat slices can exist.Comment: 5 LaTeX pages; no figures; to be submitted to Phys. Rev.

    Symmetries and Motions in Manifolds

    Full text link
    In these lectures the relations between symmetries, Lie algebras, Killing vectors and Noether's theorem are reviewed. A generalisation of the basic ideas to include velocity-dependend co-ordinate transformations naturally leads to the concept of Killing tensors. Via their Poisson brackets these tensors generate an {\em a priori} infinite-dimensional Lie algebra. The nature of such infinite algebras is clarified using the example of flat space-time. Next the formalism is extended to spinning space, which in addition to the standard real co-ordinates is parametrized also by Grassmann-valued vector variables. The equations for extremal trajectories (`geodesics') of these spaces describe the pseudo-classical mechanics of a Dirac fermion. We apply the formalism to solve for the motion of a pseudo-classical electron in Schwarzschild space-time.Comment: 19 pages. Lectures at 28th Winter School of Theoretical Physics, Karpacz (Poland, 1992) by J.W. van Holte

    Thermally assisted magnetization reversal in the presence of a spin-transfer torque

    Full text link
    We propose a generalized stochastic Landau-Lifshitz equation and its corresponding Fokker-Planck equation for the magnetization dynamics in the presence of spin transfer torques. Since the spin transfer torque can pump a magnetic energy into the magnetic system, the equilibrium temperature of the magnetic system is ill-defined. We introduce an effective temperature based on a stationary solution of the Fokker-Planck equation. In the limit of high energy barriers, the law of thermal agitation is derived. We find that the N\'{e}el-Brown relaxation formula remains valid as long as we replace the temperature by an effective one that is linearly dependent of the spin torque. We carry out the numerical integration of the stochastic Landau-Lifshitz equation to support our theory. Our results agree with existing experimental data.Comment: 5 figure

    On static spherically symmetric solutions of the vacuum Brans-Dicke theory

    Full text link
    It is shown that among the four classes of the static spherically symmetric solution of the vacuum Brans-Dicke theory of gravity only two are really independent. Further by matching exterior and interior (due to physically reasonable spherically symmetric matter source) scalar fields it is found that only Brans class I solution with certain restriction on solution parameters may represent exterior metric for a nonsingular massive object. The physical viability of the black hole nature of the solution is investigated. It is concluded that no physical black hole solution different from the Schwarzschild black hole is available in the Brans-Dicke theory.Comment: 15 pages, To be published in Gen. Rel. and Grav, typos in references correcte

    Decay rate and renormalized frequency shift of a quantum wire Wannier exciton in a planar microcavity

    Full text link
    The superradiant decay rate and frequency shift of a Wannier exciton in a one-dimensional quantum wire are studied. It is shown that the dark mode exciton can be examined experimentally when the quantum wire is embedded in a planar microcavity. It is also found that the decay rate is greatly enhanced as the cavity length LcL_{c} is equal to the multiple wavelength of the emitted photon. Similar to its decay rate counterpart, the frequency shift also shows discontinuities at resonant modes.Comment: 12 pages, 2 figures. To appear in P. R. B. September 200

    Tiling groupoids and Bratteli diagrams

    Full text link
    Let T be an aperiodic and repetitive tiling of R^d with finite local complexity. Let O be its tiling space with canonical transversal X. The tiling equivalence relation R_X is the set of pairs of tilings in X which are translates of each others, with a certain (etale) topology. In this paper R_X is reconstructed as a generalized "tail equivalence" on a Bratteli diagram, with its standard AF-relation as a subequivalence relation. Using a generalization of the Anderson-Putnam complex, O is identified with the inverse limit of a sequence of finite CW-complexes. A Bratteli diagram B is built from this sequence, and its set of infinite paths dB is homeomorphic to X. The diagram B is endowed with a horizontal structure: additional edges that encode the adjacencies of patches in T. This allows to define an etale equivalence relation R_B on dB which is homeomorphic to R_X, and contains the AF-relation of "tail equivalence".Comment: 34 pages, 4 figure

    Charge Transport Through Open, Driven Two-Level Systems with Dissipation

    Full text link
    We derive a Floquet-like formalism to calculate the stationary average current through an AC driven double quantum dot in presence of dissipation. The method allows us to take into account arbitrary coupling strengths both of a time-dependent field and a bosonic environment. We numerical evaluate a truncation scheme and compare with analytical, perturbative results such as the Tien-Gordon formula.Comment: 14 pages, 6 figures. To appear in Phys. Rev.

    Pulsar Timing and its Application for Navigation and Gravitational Wave Detection

    Full text link
    Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_GW ~1E-9 - 1E-7 Hz) gravitational waves. We present the current status and provide an outlook for the future.Comment: 30 pages, 9 figures. To appear in Vol 63: High Performance Clocks, Springer Space Science Review

    Domain Wall Spacetimes: Instability of Cosmological Event and Cauchy Horizons

    Get PDF
    The stability of cosmological event and Cauchy horizons of spacetimes associated with plane symmetric domain walls are studied. It is found that both horizons are not stable against perturbations of null fluids and massless scalar fields; they are turned into curvature singularities. These singularities are light-like and strong in the sense that both the tidal forces and distortions acting on test particles become unbounded when theses singularities are approached.Comment: Latex, 3 figures not included in the text but available upon reques
    corecore