1,163 research outputs found

    On the Relation between Solar Activity and Clear-Sky Terrestrial Irradiance

    Full text link
    The Mauna Loa Observatory record of direct-beam solar irradiance measurements for the years 1958-2010 is analysed to investigate the variation of clear-sky terrestrial insolation with solar activity over more than four solar cycles. The raw irradiance data exhibit a marked seasonal cycle, extended periods of lower irradiance due to emissions of volcanic aerosols, and a long-term decrease in atmospheric transmission independent of solar activity. After correcting for these effects, it is found that clear-sky terrestrial irradiance typically varies by about 0.2 +/- 0.1% over the course of the solar cycle, a change of the same order of magnitude as the variations of the total solar irradiance above the atmosphere. An investigation of changes in the clear-sky atmospheric transmission fails to find a significant trend with sunspot number. Hence there is no evidence for a yet unknown effect amplifying variations of clear-sky irradiance with solar activity.Comment: 16 pages, 7 figures, in press at Solar Physics; minor changes to the text to match final published versio

    The Randomized Shortened Dental Arch Study: Tooth Loss

    Get PDF
    The evidence concerning the management of shortened dental arch (SDA) cases is sparse. This multi-center study was aimed at generating data on outcomes and survival rates for two common treatments, removable dental prostheses (RDP) for molar replacement or no replacement (SDA). The hypothesis was that the treatments lead to different incidences of tooth loss. We included 215 patients with complete molar loss in one jaw. Molars were either replaced by RDP or not replaced, according to the SDA concept. First tooth loss after treatment was the primary outcome measure. This event occurred in 13 patients in the RDP group and nine patients in the SDA group. The respective Kaplan-Meier survival rates at 38 months were 0.83 (95% CI: 0.74-0.91) in the RDP group and 0.86 (95% CI: 0.78-0.95) in the SDA group, the difference being non-significant

    One-dimensional phase transitions in a two-dimensional optical lattice

    Full text link
    A phase transition for bosonic atoms in a two-dimensional anisotropic optical lattice is considered. If the tunnelling rates in two directions are different, the system can undergo a transition between a two-dimensional superfluid and a one-dimensional Mott insulating array of strongly coupled tubes. The connection to other lattice models is exploited in order to better understand the phase transition. Critical properties are obtained using quantum Monte Carlo calculations. These critical properties are related to correlation properties of the bosons and a criterion for commensurate filling is established.Comment: 14 pages, 8 figure

    Q2Q^2 Independence of QF2/F1QF_2/F_1, Poincare Invariance and the Non-Conservation of Helicity

    Get PDF
    A relativistic constituent quark model is found to reproduce the recent data regarding the ratio of proton form factors, F2(Q2)/F1(Q2)F_2(Q^2)/F_1(Q^2). We show that imposing Poincare invariance leads to substantial violation of the helicity conservation rule, as well as an analytic result that the ratio F2(Q2)/F1(Q2)∌1/QF_2(Q^2)/F_1(Q^2)\sim 1/Q for intermediate values of Q2Q^2.Comment: 13 pages, 7 figures, to be submitted to Phys. Rev. C typos corrected, references added, 1 new figure to show very high Q^2 behavio

    Paramagnetic effect in YBaCuO grain boundary junctions

    Full text link
    A detailed investigation of the magnetic response of YBaCuO grain boundary Josephson junctions has been carried out using both radio-frequency measurements and Scanning SQUID Microscopy. In a nominally zero-field-cooled regime we observed a paramagnetic response at low external fields for 45 degree asymmetric grain boundaries. We argue that the observed phenomenology results from the d-wave order parameter symmetry and depends on Andreev bound states.Comment: To be published in Phys. Rev.

    The detection of Gravitational Waves

    Get PDF
    This chapter is concerned with the question: how do gravitational waves (GWs) interact with their detectors? It is intended to be a theory review of the fundamental concepts involved in interferometric and acoustic (Weber bar) GW antennas. In particular, the type of signal the GW deposits in the detector in each case will be assessed, as well as its intensity and deconvolution. Brief reference will also be made to detector sensitivity characterisation, including very summary data on current state of the art GW detectors.Comment: 33 pages, 12 figures, LaTeX2e, Springer style files --included. For Proceedings of the ERE-2001 Conference (Madrid, September 2001
    • 

    corecore