35 research outputs found

    Gossamer roadmap technology reference study for a solar polar mission

    Get PDF
    A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100 – 125 m to deliver a ‘sufficient value’ minimum science payload, and that a 2. 5ÎŒm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass

    The plasma universe: a coherent science theme for Voyage 2050

    Get PDF
    In review of the White Papers from the Voyage 2050 process1 and after the public presentation of a number of these papers in October 2019 in Madrid, we as White Paper lead authors have identified a coherent science theme that transcends the divisions around which the Topical Teams are structured. This note aims to highlight this synergistic science theme and to make the Topical Teams and the Voyage 2050 Senior Committee aware of the wide importance of these topics and the broad support that they have across the worldwide science community

    Progressive transformation of a flux rope to an ICME

    Full text link
    The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by the interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 and 10 November, 2004. After determining an approximated orientation for the flux rope using the minimum variance method, we precise the orientation of the cloud axis relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the in- and out-bound branches, and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted considering the existence of a previous larger flux rope, which partially reconnected with its environment in the front. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).Comment: Solar Physics (in press

    The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories

    Full text link

    In Situ Measurement of the Energy Fraction in Suprathermal and Energetic Particles at ACE, Wind, and PSP Interplanetary Shocks

    No full text
    The acceleration of charged particles by interplanetary shocks (IPs) can drain a nonnegligible fraction of the plasma pressure. In this study, we have selected 17 IPs observed in situ at 1 au by the Advanced Composition Explorer and the Wind spacecraft, and 1 shock at 0.8 au observed by Parker Solar Probe. We have calculated the time-dependent partial pressure of suprathermal and energetic particles (smaller and greater than 50 keV for protons and 30 keV for electrons, respectively) in both the upstream and downstream regions. The particle fluxes were averaged for 1 hr before and 1 hr after the shock time to remove short timescale effects. Using the MHD Rankine-Hugoniot jump conditions, we find that the fraction of the total upstream energy flux transferred to suprathermal and energetic downstream particles is typically ≀ 16%, in agreement with previous observations and simulations. Notably, by accounting for errors on all measured shock parameters, we have found that for any given fast magnetosonic Mach number, M f 0.1) for the Wind events. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The Martian surface radiation environment at solar minimum measured with MSL/RAD

    No full text
    The radiation environment at the surface of Mars is mainly dominated by incoming galactic cosmic rays (GCRs) that propagate through the atmosphere, with sporadic strong contributions from solar energetic particles (SEPs). The main driver for changes in the radiation field, on time scales of years, is the solar modulation of the GCR flux. During times of higher solar activity, GCRs are more strongly attenuated, resulting in highest GCR fluxes during solar minimum and lowest fluxes at solar maximum. We report dosimetric measurements conducted with the Radiation Assessment Detector (RAD) from November 2019 to October 2020 during the recent deep solar minimum. RAD has been operating on board NASA's Curiosity rover on Mars since August 2012. We bring these measurements into context with RAD measurements from 2012 to 2013 around the (weak) maximum of Solar Cycle 24. The results show the impact of the changing solar modulation from 2012 to 2020 on the Martian surface radiation environment and have implications for future human exploration missions of Mars. We find that while the overall radiation dose rate has increased significantly by 50% between the two time frames, the biologically highly relevant dose equivalent rate shows a modest increase of 13%, yielding interesting input for the timing of such Mars missions within the solar cycle. We also report the first results of the analysis of the flux of medium-energy protons with 100–300 MeV on the Martian surface, yielding an important additional, in-situ measured data point for validating radiation transport models

    Measurements of radiation quality factor on Mars with the Mars Science Laboratory Radiation Assessment Detector

    No full text
    We report the first long-term measurements of the radiation quality factor of energetic charged particles on the surface of Mars. The Radiation Assessment Detector (RAD) aboard the Mars Science Laboratory rover, also known as Curiosity, has been operating on Mars since 2012. RAD contains thin silicon detectors that record the ionization energy loss of energetic charged particles. The particles are dominantly galactic cosmic rays (GCRs) and the products of their interactions in the Martian atmosphere, with occasional contributions from solar energetic particles (SEPs). The quality factor on the surface of Mars is influenced by two factors: variations in the shielding provided by the atmosphere, and changes in the spectrum of the incident energetic particle flux due to the 11-year solar cycle. The two cannot be easily disentangled using the data alone, but insights can be gained from calculations and Monte Carlo simulations

    First observations and performance of the RPW instrument on board the Solar Orbiter mission

    Get PDF
    Contains fulltext : 243987.pdf (Publisher’s version ) (Open Access

    In Situ Observations of Solar Wind Stream Interface Evolution

    Get PDF
    The heliocentric orbits of the two STEREO satellites are similar in radius and ecliptic latitude, with separation in longitude increasing by about 45° per year. This arrangement provides a unique opportunity to study the evolution of stream interfaces near 1 AU over time scales of hours to a few days, much less than the period of a Carrington rotation. Assuming nonevolving solar wind sources that corotate with the Sun, we calculated the expected time and longitude of arrival of stream interfaces at the Ahead observatory based on the in situ solar wind speeds measured at the Behind observatory. We find agreement to within 5° between the expected and actual arrival longitude until the spacecraft are separated by more than 20° in heliocentric inertial longitude. This corresponds to about one day between the measurement times. Much larger deviations, up to 25° in longitude, are observed after 20° separation. Some of the deviations can be explained by a latitude difference between the spacecraft, but other deviations most likely result from evolution of the source region. Both remote and in situ measurements show that changes at the source boundary can occur on a time scale much shorter than one solar rotation. In 32 of 41 cases, the interface was observed earlier than expected at STEREO/Ahead
    corecore