36 research outputs found

    Exceptional skull of huayqueriana (mammalia, litopterna, macraucheniidae) from the late miocene of Argentina: Anatomy, systematics, and peleobiological implications

    Get PDF
    The Huayquerías Formation (Late Miocene, Huayquerian SALMA) is broadly exposed in westcentral Argentina (Mendoza). The target of several major paleontological expeditions in the first half of the 20th century, the Mendozan Huayquerías (badlands) have recently yielded a significant number of new fossil finds. In this contribution we describe a complete skull (IANIGLA-PV 29) and place it systematically as Huayqueriana cf. H. cristata (Rovereto, 1914) (Litopterna, Macraucheniidae). The specimen shares some nonexclusive features with H. cristata (similar size, rostral border of the orbit almost level with distal border of M3, convergence of maxillary bones at the level of the P3/P4 embrasure, flat snout, very protruding orbits, round outline of premaxillary area in palatal view, and small diastemata between I3/C and C/P1). Other differences (e.g., lack of sagittal crest) may or may not represent intraspecific variation. In addition to other features described here, endocast reconstruction utilizing computer tomography (CT) revealed the presence of a derived position of the orbitotemporal canal running below the rhinal fissure along the lateroventral aspect of the piriform lobe. CT scanning also established that the maxillary nerve (CN V2) leaves the skull through the sphenoorbital fissure, as in all other litopterns, a point previously contested for macraucheniids. The angle between the lateral semicircular canal and the plane of the base of the skull is about 26°, indicating that in life the head was oriented much as in modern horses. Depending on the variables used, estimates of the body mass of IANIGLA-PV 29 produced somewhat conflicting results. Our preferred body mass estimate is 250 kg, based on the centroid size of 36 3D cranial landmarks and accompanying low prediction error. The advanced degree of tooth wear in IANIGLA-PV 29 implies that the individual died well into old age. However, a count of cementum lines on the sectioned left M2 is consistent with an age at death of 10 or 11 years, younger than expected given its body mass. This suggests that the animal had a very abrasive diet. Phylogenetic analysis failed to resolve the position of IANIGLA-PV 29 satisfactorily, a result possibly influenced by intraspecific variation. There is no decisive evidence for the proposition that Huayqueriana, or any other litoptern, were foregut fermenters.Fil: Forasiepi, Analia Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: MacPhee, Ross D. E.. American Museum Of Natural History; Estados UnidosFil: Hernández del Pino, Santiago Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Schmidt, Gabriela Ines. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; ArgentinaFil: Amson, Eli. Universitat Zurich; SuizaFil: Grohé, Camille. American Museum Of Natural History; Estados Unido

    Postcranial remains of Antillean monkeys

    No full text
    Includes bibliographical references (p. 61-64).This paper describes postcranial remains pertaining to the endemic xenotrichin callicebines of the Greater Antilles, all of which are extinct: Xenothrix mcgregori (Jamaica), Antillothrix bernensis (Hispaniola), and Paralouatta varonai and P. marianae (Cuba). These monkeys differed considerably in body size and inferred locomotor behavior. Xenothrix and Antillothrix are estimated to have weighed 2-5 kg, which is well within the middle range of body sizes found in extant South American monkeys, but Paralouatta (~ 9-10 kg) would have been nearly as large as the largest living platyrrhines. In line with previous studies, we interpret Xenothrix mcgregori as a rather short-limbed, slow-moving arboreal quadruped possessing some unusual features not otherwise seen in platyrrhines (e.g., adductor process or "fourth trochanter" of the femur). Its closest locomotor analog among living primates remains uncertain. Paralouatta varonai also exhibits features not seen in other platyrrhines, but in this case there are intriguing resemblances to certain Old World monkeys (e.g., retroflexed medial epicondyle and narrow trochlea on humerus, stabilization features of talocrural joint, short digital rays), especially so-called semiterrestrial cercopithecines whose locomotor repertoire includes a significant amount of movement on the ground (e.g., Cercopithecus lhoesti). At the same time, the Cuban monkey conspicuously lacks most features uniquely connected with suspensory activities, otherwise seen in all living platyrrhines of large body size. The locomotor and postural repertoire of Antillothrix is unresolved, as the only element currently available for analysis is a distal tibia. The tibia of the Hispaniolan monkey is not very informative from a functional standpoint, although it exhibits less emphasis on talocrural stabilization than does the equivalent element in Paralouatta (e.g., size of medial malleolus). The diverse postcranial specializations exhibited by xenotrichins are consistent with their long isolation (at least since Oligocene) on land masses in the Caribbean Sea

    Characterization of an endogenous retrovirus class in elephants and their relatives.

    Get PDF
    BACKGROUND: Endogenous retrovirus-like elements (ERV-Ls, primed with tRNA leucine) are a diverse group of reiterated sequences related to foamy viruses and widely distributed among mammals. As shown in previous investigations, in many primates and rodents this class of elements has remained transpositionally active, as reflected by increased copy number and high sequence diversity within and among taxa. RESULTS: Here we examine whether proviral-like sequences may be suitable molecular probes for investigating the phylogeny of groups known to have high element diversity. As a test we characterized ERV-Ls occurring in a sample of extant members of superorder Uranotheria (Asian and African elephants, manatees, and hyraxes). The ERV-L complement in this group is even more diverse than previously suspected, and there is sequence evidence for active expansion, particularly in elephantids. Many of the elements characterized have protein coding potential suggestive of activity. CONCLUSIONS: In general, the evidence supports the hypothesis that the complement had a single origin within basal Uranotheria

    Late Cenozoic Land Mammals from Grenada, Lesser Antilles Island-Arc

    Get PDF

    From Jumbo to Dumbo: Cranial Shape Changes in Elephants and Hippos During Phyletic Dwarfing

    No full text
    Members of the mammalian families Elephantidae and Hippopotamidae (extant and extinct elephants and hippos) include extinct dwarf species that display up to 98% decrease in body size compared to probable ancestral sources. In addition to differences in body mass, skulls of these species consistently display distinctive morphological changes, including major reduction of pneumatised areas in dwarf elephants and shortened muzzles in dwarf hippos. Here we build on previous studies of island dwarf species by conducting a geometric morphometric analysis of skull morphology and allometry in target taxa, living and extinct, and elaborate on the relation between skull size and body size. Our analysis indicates that skull size and body size within terrestrial placental mammals scale almost isometrically (PGLS major axis slope 0.906). Furthermore, skull shape in dwarf species differed from both their ancestors and the juveniles of extant species. In insular dwarf hippos, the skull was subject to considerable anatomical reorganisation in response to distinct selection pressures affecting early ontogeny (the “island syndrome”). By contrast, skull shape in adult insular dwarf elephants can be explained well by allometric effects; selection on size may thus have been the main driver of skull shape in dwarf elephants. We suggest that a tightly constrained growth trajectory, without major anatomical reorganization of the skull, allowed for flexible adaptations to changing environments and was one of the factors underlying the evolutionary success of insular dwarf elephants. © 2018, Springer Science+Business Media, LLC, part of Springer Nature

    Mortality in a predator-free insular environment: The dwarf deer of crete

    No full text
    Age-graded fossils of Pleistocene endemic Cretan deer (Candiacervus spp.) reveal unexpectedly high juvenile mortality similar to that reported for extant mainland ruminants, despite the fact that these deer lived in a predator-free environment and became extinct before any plausible date for human arrival. Age profiles show that deer surviving past the fawn stage were relatively long-lived for ruminants, indicating that high juvenile mortality was not an expression of their living a "fast" life. Although the effects on survivorship of such variables as fatal accidents, starvation, and disease are difficult to gauge in extinct taxa, the presence of extreme morphological variability within nominal species/ecomorphs of Candiacervus is consistent with the view that high juvenile mortality can function as a key innovation permitting rapid adaptation in insular contexts. Copyright © 2014 American Museum of Natural History
    corecore