437 research outputs found
Specimen dimensions influence the measurement of material properties in tendon fascicles
Stress, strain and modulus are regularly used to characterize material properties of tissue samples. However, when comparing results from different studies it is evident the reported material properties, particularly failure strains, vary hugely. The aim of our study was to characterize how and why specimen length and cross-sectional area (CSA) appear to influence failure stress, strain and modulus in fascicles from two functionally different tendons. Fascicles were dissected from five rat tails and five bovine foot extensors, their diameters determined by a laser micrometer, and loaded to failure at a range of grip-to-grip lengths. Strain to failure significantly decreased with increasing in specimen length in both rat and bovine fascicles, while modulus increased. Specimen length did not influence failure stress in rat tail fascicles, although in bovine fascicles it was significantly lower in the longer 40 mm specimens compared to 5 and 10 mm specimens. The variations in failure strain and modulus with sample length could be predominantly explained by end-effects. However, it was also evident that strain fields along the sample length were highly variable and notably larger towards the ends of the sample than the mid-section even at distances in excess of 5 mm from the gripping points. Failure strain, stress and modulus correlated significantly with CSA at certain specimen lengths. Our findings have implications for the mechanical testing of tendon tissue: while it is not always possible to control for fascicle length and/or CSA, these parameters have to be taken into account when comparing samples of different dimensions
Biharmonic pattern selection
A new model to describe fractal growth is discussed which includes effects
due to long-range coupling between displacements . The model is based on the
biharmonic equation in two-dimensional isotropic defect-free
media as follows from the Kuramoto-Sivashinsky equation for pattern formation
-or, alternatively, from the theory of elasticity. As a difference with
Laplacian and Poisson growth models, in the new model the Laplacian of is
neither zero nor proportional to . Its discretization allows to reproduce a
transition from dense to multibranched growth at a point in which the growth
velocity exhibits a minimum similarly to what occurs within Poisson growth in
planar geometry. Furthermore, in circular geometry the transition point is
estimated for the simplest case from the relation
such that the trajectories become stable at the growing surfaces in a
continuous limit. Hence, within the biharmonic growth model, this transition
depends only on the system size and occurs approximately at a distance far from a central seed particle. The influence of biharmonic patterns on
the growth probability for each lattice site is also analysed.Comment: To appear in Phys. Rev. E. Copies upon request to
[email protected]
A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy.
Antimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection. Increasing peptide-lipid intermolecular hydrogen bonding capabilities enhances conformational flexibility, associated with membrane translocation, but also membrane damage and potency, most notably against Gram-positive bacteria. This negates their ability to metabolically adapt to the AMP threat. An analogue comprising D-amino acids was well tolerated at an intravenous dose of 15 mg/kg and similarly effective as vancomycin in reducing EMRSA-15 lung CFU. This highlights the therapeutic potential of systemically delivered, bactericidal AMPs
Quantum dots in high magnetic fields: Rotating-Wigner-molecule versus composite-fermion approach
Exact diagonalization results are reported for the lowest rotational band of
N=6 electrons in strong magnetic fields in the range of high angular momenta 70
<= L <= 140 (covering the corresponding range of fractional filling factors 1/5
>= nu >= 1/9). A detailed comparison of energetic, spectral, and transport
properties (specifically, magic angular momenta, radial electron densities,
occupation number distributions, overlaps and total energies, and exponents of
current-voltage power law) shows that the recently discovered
rotating-electron-molecule wave functions [Phys. Rev. B 66, 115315 (2002)]
provide a superior description compared to the
composite-fermion/Jastrow-Laughlin ones.Comment: Extensive clarifications were added (see new footnotes) regarding the
difference between the rotating Wigner molecule and the bulk Wigner crystal;
also regarding the influence of an external confining potential. 12 pages.
Revtex4 with 6 EPS figures and 5 tables . For related papers, see
http://www.prism.gatech.edu/~ph274c
Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight
The first flight of the Antarctic Impulsive Transient Antenna (ANITA)
experiment recorded 16 radio signals that were emitted by cosmic-ray induced
air showers. For 14 of these events, this radiation was reflected from the ice.
The dominant contribution to the radiation from the deflection of positrons and
electrons in the geomagnetic field, which is beamed in the direction of motion
of the air shower. This radiation is reflected from the ice and subsequently
detected by the ANITA experiment at a flight altitude of 36km. In this paper,
we estimate the energy of the 14 individual events and find that the mean
energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we
calculate its exposure for ultra-high energy cosmic rays. We estimate for the
first time the cosmic-ray flux derived only from radio observations. In
addition, we find that the Monte Carlo simulation of the ANITA data set is in
agreement with the total number of observed events and with the properties of
those events.Comment: Added more explanation of the experimental setup and textual
improvement
Impact of ongoing centralization of acute stroke care from "drip and ship" into "direct-to-mothership" model in a Dutch urban area
When acute stroke care is organised using a "drip-and-ship" model, patients receive immediate treatment at the nearest primary stroke centre followed by transfer to a comprehensive stroke centre (CSC). When stroke care is further centralised into the "direct-to-mothership" model, patients with stroke symptoms are immediately brought to a CSC to further reduce treatment times and enhance stroke outcomes. We investigated the effects of the ongoing centralization in a Dutch urban setting on treatment times of patients with confirmed ischemic stroke in a 4-year period. Next, in a non-randomized controlled trial, we assessed treatment times of patients with suspected ischemic stroke, and treatment times of patients with neurologic disorders other than suspected ischemic stroke, before and after the intervention in the CSC and the decentralized hospitals, the intervention being the change from "drip and ship" into "direct-to-mothership". Our findings provide support for the ongoing centralization of acute stroke care in urban areas. Treatment times for patients with ischemic stroke decreased significantly, potentially improving functional outcomes. Improvements in treatment times for patients with suspected ischemic stroke were achieved without negative side effects for self-referrals with stroke symptoms and patients with other neurological disorders. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )Paroxysmal Cerebral Disorder
A constructive study of the module structure of rings of partial differential operators
The purpose of this paper is to develop constructive versions of Stafford's theorems on the module structure of Weyl algebras A n (k) (i.e., the rings of partial differential operators with polynomial coefficients) over a base field k of characteristic zero. More generally, based on results of Stafford and Coutinho-Holland, we develop constructive versions of Stafford's theorems for very simple domains D. The algorithmization is based on the fact that certain inhomogeneous quadratic equations admit solutions in a very simple domain. We show how to explicitly compute a unimodular element of a finitely generated left D-module of rank at least two. This result is used to constructively decompose any finitely generated left D-module into a direct sum of a free left D-module and a left D-module of rank at most one. If the latter is torsion-free, then we explicitly show that it is isomorphic to a left ideal of D which can be generated by two elements. Then, we give an algorithm which reduces the number of generators of a finitely presented left D-module with module of relations of rank at least two. In particular, any finitely generated torsion left D-module can be generated by two elements and is the homomorphic image of a projective ideal whose construction is explicitly given. Moreover, a non-torsion but non-free left D-module of rank r can be generated by r+1 elements but no fewer. These results are implemented in the Stafford package for D=A n (k) and their system-theoretical interpretations are given within a D-module approach. Finally, we prove that the above results also hold for the ring of ordinary differential operators with either formal power series or locally convergent power series coefficients and, using a result of Caro-Levcovitz, also for the ring of partial differential operators with coefficients in the field of fractions of the ring of formal power series or of the ring of locally convergent power series. © 2014 Springer Science+Business Media
Langerhans cell histiocytosis (histiocytosis X)
There has been a renewed interest in Langerhans cell histiocytosis in recent years due both to advances in basic research and to improvements in diagnostic and treatment approaches. In this article, we review the various aspects of the disease and the potential implications of these recent scientific researches for our understanding and management of the disorder.published_or_final_versio
The Meta VCI Map consortium for meta-analyses on strategic lesion locations for vascular cognitive impairment using lesion-symptom mapping: design and multicenter pilot study
Introduction: The Meta VCI Map consortium performs meta-analyses on strategic lesion locations for vascular cognitive impairment using lesion-symptom mapping. Integration of data from different cohorts will increase sample sizes, to improve brain lesion coverage and support comprehensive lesion-symptom mapping studies. Methods: Cohorts with available imaging on white matter hyperintensities or infarcts and cognitive testing were invited. We performed a pilot study to test the feasibility of multicenter data processing and analysis and determine the benefits to lesion coverage. Results: Forty-seven groups have joined Meta VCI Map (stroke n = 7800 patients; memory clinic n = 4900; population-based n = 14,400). The pilot study (six ischemic stroke cohorts, n = 878) demonstrated feasibility of multicenter data integration (computed tomography/magnetic resonance imaging) and achieved marked improvement of lesion coverage. Discussion: Meta VCI Map will provide new insights into the relevance of vascular lesion location for cognitive dysfunction. After the successful pilot study, further projects are being prepared. Other investigators are welcome to join
- …