1,210 research outputs found

    Inclusive Quasi-Elastic Charged-Current Neutrino-Nucleus Reactions

    Get PDF
    The Quasi-Elastic (QE) contribution of the nuclear inclusive electron scattering model developed in Nucl. Phys. A627 (1997) 543 is extended to the study of electroweak Charged Current (CC) induced nuclear reactions, at intermediate energies of interest for future neutrino oscillation experiments. The model accounts for, among other nuclear effects, long range nuclear (RPA) correlations, Final State Interaction (FSI) and Coulomb corrections. Predictions for the inclusive muon capture in 12^{12}C and the reaction 12^{12}C (νμ,μ)X(\nu_\mu,\mu^-)X near threshold are also given. RPA correlations are shown to play a crucial role and their inclusion leads to one of the best existing simultaneous description of both processes, with accuracies of the order of 10-15% per cent for the muon capture rate and even better for the LSND measurement.Comment: 31 pages and 14 figures, accepted for publication as a regular article in Physical Review

    Harrison transformation and charged black objects in Kaluza-Klein theory

    Full text link
    We generate charged black brane solutions in DD-dimensions in a theory of gravity coupled to a dilaton and an antisymmetric form, by using a Harrison-type transformation. The seed vacuum solutions that we use correspond to uplifted Kaluza-Klein black strings and black holes in (Dp)(D-p)-dimensions. A generalization of the Marolf-Mann quasilocal formalism to the Kaluza-Klein theory is also presented, the global charges of the black objects being computed in this way. We argue that the thermodynamics of the charged solutions can be derived from that of the vacuum configurations. Our results show that all charged Kaluza-Klein solutions constructed by means of Harrison transformations are thermodynamically unstable in a grand canonical ensemble. The general formalism is applied to the case of nonuniform black strings and caged black hole solutions in D=5,6D=5, 6 Einstein-Maxwell-dilaton gravity, whose geometrical properties and thermodynamics are discussed. We argue that the topology changing transition scenario, which was previously proposed in the vacuum case, also holds in this case. Spinning generalizations of the charged black strings are constructed in six dimensions in the slowly rotating limit. We find that the gyromagnetic ratio of these solutions possesses a nontrivial dependence on the nonuniformity parameter.Comment: 42 pages, 12 figure

    Holography: 2-D or not 2-D?

    Full text link
    As was recently pointed out by Cadoni, a certain class of two-dimensional gravitational theories will exhibit (black hole) thermodynamic behavior that is reminiscent of a free field theory. In the current letter, a direct correspondence is established between these two-dimensional models and the strongly curved regime of (arbitrary-dimensional) anti-de Sitter gravity. On this basis, we go on to speculatively argue that two-dimensional gravity may ultimatley be utilized for identifying and perhaps even understanding holographic dualities.Comment: 8 pages, Revtex; (v2) references and footnote added; (v3) discussion on page 5 revise

    Open strings, 2D gravity and AdS/CFT correspondence

    Get PDF
    We present a detailed discussion of the duality between dilaton gravity on AdS_2 and open strings. The correspondence between the two theories is established using their symmetries and field theoretical, thermodynamic, and statistical arguments. We use the dual conformal field theory to describe two-dimensional black holes. In particular, all the semiclassical features of the black holes, including the entropy, have a natural interpretation in terms of the dual microscopic conformal dynamics. The previous results are discussed in the general framework of the Anti-de Sitter/Conformal Field Theory dualities.Comment: 22 pages, Typeset using REVTE

    Evolution of active and polar photospheric magnetic fields during the rise of Cycle 24 compared to previous cycles

    Full text link
    The evolution of the photospheric magnetic field during the declining phase and minimum of Cycle 23 and the recent rise of Cycle 24 are compared with the behavior during previous cycles. We used longitudinal full-disk magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), the Spectromagnetograph and the 512-Channel Magnetograph instruments, and longitudinal full-disk magnetograms from the Mt. Wilson 150-foot tower. We analyzed 37 years of observations from these two observatories that have been observing daily, weather permitting, since 1974, offering an opportunity to study the evolving relationship between the active region and polar fields in some detail over several solar cycles. It is found that the annual averages of a proxy for the active region poloidal magnetic field strength, the magnetic field strength of the high-latitude poleward streams, and the time derivative of the polar field strength are all well correlated in each hemisphere. These results are based on statistically significant cyclical patterns in the active region fields and are consistent with the Babcock-Leighton phenomenological model for the solar activity cycle. There was more hemispheric asymmetry in the activity level, as measured by total and maximum active region flux, during late Cycle 23 (after around 2004), when the southern hemisphere was more active, and Cycle 24 up to the present, when the northern hemisphere has been more active, than at any other time since 1974. The active region net proxy poloidal fields effectively disappeared in both hemispheres around 2004, and the polar fields did not become significantly stronger after this time. We see evidence that the process of Cycle 24 field reversal has begun at both poles.Comment: Accepted for publication in Solar Physic

    The extremal limits of the C-metric: Nariai, Bertotti-Robinson and anti-Nariai C-metrics

    Full text link
    In two previous papers we have analyzed the C-metric in a background with a cosmological constant, namely the de Sitter (dS) C-metric, and the anti-de Sitter (AdS) C-metric, following the work of Kinnersley and Walker for the flat C-metric. These exact solutions describe a pair of accelerated black holes in the flat or cosmological constant background, with the acceleration A being provided by a strut in-between that pushes away the two black holes. In this paper we analyze the extremal limits of the C-metric in a background with generic cosmological constant. We follow a procedure first introduced by Ginsparg and Perry in which the Nariai solution, a spacetime which is the direct topological product of the 2-dimensional dS and a 2-sphere, is generated from the four-dimensional dS-Schwarzschild solution by taking an appropriate limit, where the black hole event horizon approaches the cosmological horizon. Similarly, one can generate the Bertotti-Robinson metric from the Reissner-Nordstrom metric by taking the limit of the Cauchy horizon going into the event horizon of the black hole, as well as the anti-Nariai by taking an appropriate solution and limit. Using these methods we generate the C-metric counterparts of the Nariai, Bertotti-Robinson and anti-Nariai solutions, among others. One expects that the solutions found in this paper are unstable and decay into a slightly non-extreme black hole pair accelerated by a strut or by strings. Moreover, the Euclidean version of these solutions mediate the quantum process of black hole pair creation, that accompanies the decay of the dS and AdS spaces

    Reconciling MOND and dark matter?

    Full text link
    Observations of galaxies suggest a one-to-one analytic relation between the inferred gravity of dark matter at any radius and the enclosed baryonic mass, a relation summarized by Milgrom's law of modified Newtonian dynamics (MOND). However, present-day covariant versions of MOND usually require some additional fields contributing to the geometry, as well as an additional hot dark matter component to explain cluster dynamics and cosmology. Here, we envisage a slightly more mundane explanation, suggesting that dark matter does exist but is the source of MOND-like phenomenology in galaxies. We assume a canonical action for dark matter, but also add an interaction term between baryonic matter, gravity, and dark matter, such that standard matter effectively obeys the MOND field equation in galaxies. We show that even the simplest realization of the framework leads to a model which reproduces some phenomenological predictions of cold dark matter (CDM) and MOND at those scales where these are most successful. We also devise a more general form of the interaction term, introducing the medium density as a new order parameter. This allows for new physical effects which should be amenable to observational tests in the near future. Hence, this very general framework, which can be furthermore related to a generalized scalar-tensor theory, opens the way to a possible unification of the successes of CDM and MOND at different scales.Comment: 9 page

    Dark energy and key physical parameters of clusters of galaxies

    Full text link
    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: 1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.Comment: 8 pages, 1 figur

    Testing the interaction of dark energy to dark matter through the analysis of virial relaxation of clusters Abell Clusters A586 and A1689 using realistic density profiles

    Get PDF
    Interaction between dark energy and dark matter is probed through deviation from the virial equilibrium for two relaxed clusters: A586 and A1689. The evaluation of the virial equilibrium is performed using realistic density profiles. The virial ratios found for the more realistic density profiles are consistent with the absence of interaction.Comment: 16pp 1 fig; accepted by GeR

    Conserved Quasilocal Quantities and General Covariant Theories in Two Dimensions

    Full text link
    General matterless--theories in 1+1 dimensions include dilaton gravity, Yang--Mills theory as well as non--Einsteinian gravity with dynamical torsion and higher power gravity, and even models of spherically symmetric d = 4 General Relativity. Their recent identification as special cases of 'Poisson--sigma--models' with simple general solution in an arbitrary gauge, allows a comprehensive discussion of the relation between the known absolutely conserved quantities in all those cases and Noether charges, resp. notions of quasilocal 'energy--momentum'. In contrast to Noether like quantities, quasilocal energy definitions require some sort of 'asymptotics' to allow an interpretation as a (gauge--independent) observable. Dilaton gravitation, although a little different in detail, shares this property with the other cases. We also present a simple generalization of the absolute conservation law for the case of interactions with matter of any type.Comment: 21 pages, LaTeX-fil
    corecore