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Abstract Interaction between dark energy and dark matter is probed through
deviation from the virial equilibrium for two relaxed clusters: A586 and A1689.
The evaluation of the virial equilibrium is performed using realistic density pro-
files. The virial ratios found for the more realistic density profiles are consistent
with the absence of interaction.
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1 Introduction

Searching for evidence and possible strategies for detection of dark energy and
dark matter are among the most pressing issues of contemporary physics. Dark
energy (DE) and dark matter (DM) are the fundamental building blocks of the
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cosmological standard model based on general relativity. If on one hand, the
interaction of the dark sector with the standard model such as neutrinos [I]
and the Higgs field [2] lead to well defined experimental implications, such as
for instance, a possible deviation from the Rutherford-Soddy radiative decay
law [4] (see eg. Ref. [5] for general discussions), on another hand, interaction
within the dark sector itself should not be excluded. Indeed, a recent study [6]
suggests that a putative interaction might also be detectable using for instance
gamma-ray bursts. The interaction between dark energy and dark matter can
be introduced either by ad hoc arguments [7] or because dark energy and dark
matter are unified in the context of some framework [B9L[I0]. Of course it is
quite relevant to search for observational evidence of this interaction.

In a previous work [I1] we have analysed the effect of the interaction be-
tween dark energy and dark matter on the virial equilibrium of clusters. Our
method is based on the generalisation of the Layzer-Irvine equation, the cos-
mic virial theorem equation, which was then applied to the Abell cluster A586.
This cluster was chosen given that it is presumably in equilibrium and has not
undergone interactions for quite a long time [12]. We have also argued that,
based on the analysis of the bias parameter, that the dark sector interactions
do signal a possible violation of the Equivalence Principle at cosmological scale
[ITLI3]. This proposal has been extended for other clusters in Refs. [14], and
as in our A586 analysis, evidence for DE-DM interaction was encountered.

In this work we reexamine the cluster A586 and extend our analysis to the
Abell cluster A1689 considering that mass distribution within the cluster is
not constant. The additional cluster A1689 is chosen as it shares with A586
the feature of showing a negligible amount of mergers, as inferred from its low
X-ray substructure [I5]. We consider four distinct density profiles: Navarro,
Frenk and White (NFW) profile [16], isothermal sphere (ISO) profile [1718]
19/ 20L2T122], Moore’s (M) profile [23] and Einasto profile [24,2526]. We also
obtain results for up to four different techniques of evaluating the velocity
dispersion o, of the haloes. We argue that the most relevant technique for
determination of the velocity dispersion is through the X-ray temperature.
Our analysis reveals that the use of more realistic mass profiles brings the
virial ratio close to its canonical value in the absence of interaction.

This work is organized as follows: in section [2] we describe the techniques
used for fitting the data with the various density profiles; section [3] presents
our analysis of the virial ratios for the previously used cluster A586; section [4]
considers the A1689 cluster; in section [l we interpret our results in terms of
DE-DM interaction. Finally, in section [6l we present our conclusions.



2 Computations of the Virial ratio for a given density profile

In this section we present our method and summarise the results of applying
realistic density profiles to estimate the interaction between DE and DM in
relaxed systems as discussed in Refs. [ITI3]. We will focus on two relaxed
galaxy clusters: A586, which was already analysed in Ref. [11] with a top-hap
density profile, and A1689.

We start by defining the basic quantities and deriving the necessary rela-
tions between them. In particular we focus on obtaining various density profile
fits for the haloes, and using the photometric coordinates of the galaxies, we
compute the average distance between a galaxy and the centre of the cluster,
(R), at which point we are in condition to evaluate the various density profiles
parameters and the corresponding errors for the cluster A586. For the cluster
A1689, we use weak lensing surface density data. To compute the virial ratio
px/pw we must also find the velocity dispersion o,. From Refs. [12][282729]
we obtain the weak lensing and photometric data necessary to compute the
different density profiles as well as values for o, as given by different methods;
note that we approximate the velocity dispersion by its average value therefore
considering it to be constant over the cluster ; we can then compute the ratio
of kinetic energy to potential energy using different data sources (see Table[I]
for A586 and Table Bl for A1689).

In Ref. [I1] we have used the simplest approach of a Top-Hat density profile
and used the velocity dispersion estimated from weak lensing measurements.
For the purpose of comparison, we present in Table [2] the outputs of such
profile with the same velocity dispersion as for the other more realistic profiles.
Although that analysis allows for claiming detection [II], a more accurate
estimate of the density leads to an underestimation of the potential energy by
placing more mass far from the centre than a realistic decreasing profile. This
implies an overestimate of the magnitude of the virial ratio, as can be seen
for central values in Table Bl This should be corrected with the use of more
realistic density profiles.

It is important to stress that the methods used vary slightly for the two
clusters we are studying here. For the A586 we proceed in the same spirit as in
Ref. [11], estimating the density and shape parameters for the several density
profiles from total 3D mass and galaxy coordinates. On the other hand, for the
A1689 cluster we fit directly the profiles to the 2D surface density obtained
from lensing measurements [28].

2.1 NFW profile

Given its prominence in discussions about the density profile emerging from
realistic N-body simulations in the context of the ACDM model, the NFW



density profile [16] will be used. It reads
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where pg and ro are the density and shape parameters respectively. Note that
since p only depends on r, spherical symmetry is built into these computations
from the very start.

In the analysis of the cluster A1689, the 2D surface density from lensing
measurements is used to perform a fit in order to obtain the estimates for pg
and rg. For the cluster A586 we proceed by computing the mass by integrating
Eq. (@) over the volume:
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which after considering Eq. (2)) can be written as follows:
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We can then get the shape parameter ry for A586 by numerically inverting

(R). We then use it to define the NFW density parameter pg from the observed
mass M contained within the radius R by inverting Eq. (@)
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The kinetic energy density is defined in terms of the average velocity dis-
persion, g, to be

13 ) 913 /R T,
=-= av = -2 ——oadr. 6
PK 2V PO, 2 R3 Lo 0 [T +T0]2UU T ( )

Assuming a constant average velocity dispersion, it reads
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as used in Ref. [I1].



The potential energy is given by
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As discussed in Ref. [11], the existence of interaction between DE and DM
is estimated by comparing the ratio px/pw with the expected —1/2 value
arising from the virial theorem. Taking the ratio of Eqs. (@) and (@) we find:
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Throughout our analysis, the errors of the ratios are computed according to
the following equation:
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where {0;} are the parameters carrying measurement errors and are defined
for each cluster as {o;} = {o,, M} for A586 and as {0;} = {0y, r0,p0} for
A1689.

2.2 Isothermal profile

Introduced first as the natural outcome of spherically symmetric DM self-
gravitating infall [I7,[I8/T9,20,21][22], the isothermal density profile is simpler
than the NF'W one:
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Here the fiducial radius rg and density po, or mass My = 4n/ 3p0r8, are ar-

bitrary as the profile is self-similar: there is no characteristic scale, so we can
chose the mass and total radius of the halo as the fiducial values,

My = M, (13)
To = R. (14)

The mass is found by integrating Eq. (I2)) over the volume:
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The mean radius (R) can then be defined with
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which after considering Eq. (IH) can be written as follows:
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Assuming a constant average velocity dispersion, it reads
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again as in Ref. [T1].

The potential energy is given by
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Taking the ratio of Eqs. (I9) and [@20) we find:
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2.3 Moore’s profile

We consider now the Moore density profile that also arises as a suitable dark
halo profile from N-body simulations [23]. It is believed to be quite accurate
to describe galaxy size halo formation [30]:
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where pg and ry are the new mass density and shape parameters, respectively.
The mass is found by integrating Eq. [22)) over the volume:
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The mean radius (R) can then be defined with

M (R) = 47713 po /R (:E)},dh (24)
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and considering Eq. [23)), it can be written as:
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We can get the shape parameter 1y numerically by inverting (R), which
can be then used to define the Moore density parameter, pg, with the observed
mass, M, contained within the radius, R, by inverting Eq. ([23):
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Table 1 Velocity dispersions from the various observations of A586 as given by Ref. [12].

Method o (Km/s)
X-ray Luminosity 1015 £ 500
X-ray Temperature 1174 £ 130
Weak lensing 1243 £ 58

Velocity distribution 1161 4 196

2.4 Einasto’s profile

The Einasto density profile [24[251[26] was originally used to describe the in-
ternal density profiles of galaxies and has been proposed as a better fit model
for ACDM haloes [3T1[321[33]:

P = pe exp [dn <<TL) " 1)] = poexp lQn (é) i] . (3

where pg = pee?" is the central density and r_s the radius at which the slope
dlnp/dlnr = —2, the isothermal value. The radius r. is defined such that it
contains half the total mass and d,, is an integration boundary to ensure that.
n gives the strength of the density fall. From Eq. [BI)) the corresponding mass

then reads:
R 1
M = 47r/ 00 €Xp [Qn (L) ] r2dr. (32)
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The mean radius (R) then becomes defined with

M (R) = 4 /OR po exp [—271 (%) _] r3dr. (33)

We can get the shape parameter r_o from observing the mean intergalactic
distance and numerically solving Eq. (33) together with Eq. (32]).

We can then use it to compute the central density parameter py by making
use of Eq. (B2). The kinetic and potential energy densities are computed from
their definition
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through numerical integration. Note that it is also possible to perform the
integrations analytically as done for the previous cases and find expressions
relating the profile parameters and the virial ratio to the data M, (R) and o.
However, since these expressions for the Einasto profile are not particularly
illuminating we will omit them.



Table 2 Virial ratio from the various observations of A586 obtained from data of Ref. [12]

using different density profiles.

Method Top Hat NFW Isothermal
X-ray Luminosity —0.516 £ 0.516 | —0.408 +0.407 | —0.353 £ 0.352
X-ray Temperature —0.691 £ 0.190 | —0.545+0.150 | —0.472 £0.130
Weak lensing —0.774 £0.145 | —0.611 £0.115 | —0.529 4+ 0.099
Velocity distribution | —0.676 £0.253 | —0.533 +0.200 | —0.461 £0.173

Moore Einaston =1 Einaston =6

—0.316 +£0.315 | —0.416 £0.415 | —0.405 % 0.404

—0.423 +£0.116 | —0.556 £ 0.153 | —0.542 + 0.149

—0.474 £0.089 | —0.624 +0.117 | —0.608 £0.114

—0.413 +£0.155 | —0.544 +£0.204 | —0.530 + 0.199

3 Analysis of A586 cluster
3.1 Data Analysis

In the analysis of A586 we used the same data used in the original analysis
performed in [IT], that is:

— member galaxy coordinates

— total mass inside a radius R, obtained from weak lensing measurementes
[12]:

M = (4.340.7) x 10" M, R = 422 Kpc (35)

— velocity dispersion from different sources, table [

Using the coordinates of the galaxies that compose A586 we can compute the
average distance between a galaxy and the centre of the cluster, (R). We start
by determining the centre of the cluster. This is done by computing the average
declination and right ascension from the coordinates of the 31 galaxies in the
cluster.

The distance of a galaxy i, with coordinates (a;,d;), to the centre of the
cluster (ag,d.) is given by:

r? = 2d*[1 — cos(a; — a)cos(8.)cos(5;) — sin(d.)sin(5;)]. (36)

Using Eq. (36) to compute r; for all galaxies in the reduced sample and then
taking the average:

(R) = 223.6 Kpc. (37)

We can then proceed to compute the shape parameters of the various
density profiles as described in the previous section and through them compute
the virial ratio and the interaction between DE and DM.
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Table 3 Summary of A1689 available data

Parameter Value Reference
po (10=2°h%2gr/cm3) 9.6+ 1.8 [28]
ro(h~kpc) 175 £18 28]
kT, (KeV) 9.270% [27]
Gayn(Km/s) 11727228 [29]
Rayn(h~1Mpc) 2.26 [29]

Table 4 NFW fit to A1689 lensing data.

Parameter Value  Error
po (10~2°h2gr/em3)  4.513  0.330
ro(h~1kpc) 271.6 125
R? 0.999 —

3.2 Comments on the results for A586

We present our results in table 2l One sees that the analysis of this cluster
with a top hat profile is in agreement with the findings of Ref. [11]. We ob-
serve consistently that using weak lensing velocity dispersion (as performed in
Ref. [I1]) yields a higher virial ratio. We stress that the weak lensing velocity
dispersion is not the most adequate data source as it introduces correlations
between mass and velocity estimation. It is crucial to avoid these correlations
as the aim of this work is to detect deviations to the virial equilibrium and
interpret these as an effect due to DE-DM interaction.

4 Analysis of the A1689 cluster

In table Bl we gather the data available for A1689. As already mentioned, for
this cluster we find the density and shape parameters for the different profiles
by directly fitting them to the 2D surface density obtained from weak and
strong lensing. The relation between the 2D surface density x(R) and the
total 3 dimensional mass density p(r) is given by

2 < p(r)rdr

Ecrit R 7"2 — R27
where Y..;; is the critical density for lensing, which depends on the back-
ground cosmology and also on the lens and source sample. For the data we
are considering, X..;; = 1.0122h g/cm? 28], for Hy = 100h km/s/Mpc and
observationally h ~ 0.7. Then, by letting p(r) be NFW, isothermal sphere,
Moore, or Einasto, we estimate the parameters of these four density profiles.

In the ensuing analysis, we will consider two methods for estimating veloc-
ity dispersion: galaxy dynamics and X-ray temperature, as shown in table
While the velocity dispersion from the galaxy dynamics is a direct measure-
ment, converting the X-ray temperature into a velocity dispersion involves
assumptions that must be explained. Defining 3 = o2 (kT /um,)~!, where u

k(R) (38)
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Table 5 Moore fit to A1689 lensing data.

Parameter Value  Error
po (10=25h%2gr/cm3)  1.064 0.525
ro(h™kpc) 357 102
R? 0.973 -

Table 6 Einasto fit to A1689 lensing data.

n=1 n=~6
Parameter Value Error | Value Error
po (10=25h2gr/cm3)  46.49 5.165 | 66005 7358
ro(h~kpc) 122.5 8.47 467.3 31.99
R? 0.9834 - 0.998 -

and m, are the reduced nuclear mass and the proton mass, allows for com-
puting o, knowing kT once [ is specified. To first approximation one can
assume the hypothesis of density energy equipartition, which corresponds to
setting 5 = 1. For this choice we find o, = (1232 &+ 27) km/s. Other values
for 8 might be used, in particular see e.g. Ref. [29]. Another issue related to
the velocity dispersion is the region in which it is measured. In the case of
0, coming from galaxy dynamics, the measurements are taken in a spherical
region whose radius is the distance to the centre of the outermost galaxy. For
the current cluster, this is found to be 2.26h~ ! Mpc. In the case of X-ray tem-
perature measurements, these are taken up to a radius 79500, i.e. the radius at
which the local density is 2500 times the critical density around the redshift
of the cluster. Assuming the ACDM cosmology, we find this to be of order
300~ 'kpc. Notice that the exact value of ra500 depends on the density profile
as it is assumed, nonetheless there is an order of magnitude difference relative
to Rdyn-

4.1 NFW profile

In Ref. [28] a joint X-ray and lensing analysis is performed and the data has
been fitted to an NFW profile, the results of which are displayed in table [3
Nonetheless we perform our own fit to the lensing data, the results of which
are shown in table [4]

Since the method used for computing pr /pw for A1689 is slightly different
from the one used for A586, the value and error of the ratio will now be given
in terms of the fitted parameters py and ro instead of M and (R). The kinetic
to potential energy density ratio is now given by

p _ 307 ()i ) - 2]+ £) (39)

oo SO [ ) 10 8) om0 )} -]

and the error is found by applying Eq. (II)) to the previous equation.
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Table 7 Virial ratio from the various observations of A1689 given by Refs. [28][27,[29].

Method NFW NFW [2§] Isothermal
X-ray Temperature —0.518 £ 0.060 | —0.538 £0.144 | —0.715 £ 0.067
Velocity distribution | —0.408 £0.099 | —0.485 +0.173 | —0.647 £0.146

Moore Einaston =1 Einaston =6

—0.549 £0.391 | —0.527 +0.093 | —0.520 £ 0.086

—0.479 £0.389 | —0.473 +0.130 | —0.353 £ 0.098

For completeness we compute the ratio px /pw using our best fit and the
fit found in Ref. [28]. The results are displayed in table [1l

4.2 Isothermal sphere density profile

Following the procedure described above, we fit the projected mass data ob-
tained from lensing measurements to the isothermal mass profile given by Eq.
(). One should notice that the isothermal profile, unlike the NFW, Moore
and Einasto profiles, has only one free parameter, namely por3. The fit to the
data yields porg = (3.987 £ 0.333) x 1072! with R? = 0.845. As indicated by
the low value of R? the isothermal profile is not very suitable to describe the
mass distribution in the cluster A1689. This can also be seen in Figure[ll The
energy density ratio is given in terms of the fitted parameter and the velocity
dispersion by:

b _ 3 o

T 8w Gripg’

40

pw (40)
with an error given by Eq. (IIJ). Note that Eq. {Q) is independent of the
region where the velocity dispersion is measured, R. This is a characteristic
feature of this profile. In Table [7 we display the results found by applying the
isothermal profile to the study of A1689.

4.3 Moore’s profile

Repeating the above procedure for the Moore’s profile with data depicted in
Table [ we get the results shown in Table [0 from which we can see that no
signal of DE-DM interaction can be seen as no deviation from the virial ratio
value —1/2 is unambiguously seen.

4.4 Einasto’s profile

Repeating the above procedure for the Einasto profile with data depicted in
Table [6] we obtain the results shown in Table [7}
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Fig. 1 Fits to 2D surface density for A1689.

5 DE-DM Interaction

In this section we relate the virial ratios computed above to the interaction
parameter between DM and DE following Ref. [11]. We start by briefly re-
viewing how the interaction is parametrised and how this parameter is related
to the virial ratio in relaxed structures. In Ref. [I1] the interaction was anal-
ysed within the context of two distinct models of interacting DE: coupled
quintessence [7] and the generalized Chaplygin Gas (GCG) [9]. It was shown
that for wpgp = —1, the coupling parameter of the interacting quintessence,
¢ (cf. below), is related to the « parameter of the GCG equation of state
p = —A/p®, by the scaling parameter (defined below) n = 3(1 + «). Keep-
ing this mapping between the two distinct models in mind, we review how
to relate virial ratio the interaction parameter in the context of the coupled
quintessence model.

The conservation equations for DM and DE read

ppm +3Hppy = EHppur, (41)

ppE +3Hppe(1+wpr) = —EHppum. (42)

It is assumed that there is a scaling behavior between the DE and DM
energy densities,
poE _ {2pE o

= 43
pom  2pm (43)
where 7 describes the scaling and is related to the coupling & by [I1]
N+ 3wpe
{= (44)

1+ (2pa0/2pr0)a""

Following the derivation of the Layzer-Irvine equation in Ref. [34], noting
that the scaling of the matter kinetic energy with the scale factor is unchanged
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by the presence of interaction with DE, px o a~2, and that the interaction
will modify the scaling of the potential energy with a to pyw o< aé~! one finds
1]

pom + H(2pr + pw) = Epw H. (45)

This is the modified Layzer-Irvine equation. Assuming that locally p ~ 0, we
find that the virial theorem is modified to

L&
pw 2 2
where ¢ is the interaction strength as defined in Eqs. (1)) and (@2]).

We are therefore mapping deviations from virial equilibrium to the exis-
tence of DE-DM interaction. If the data on a particular cluster yields px /pw >
—1/2 = & > 0 and the energy transfer occurs from DE to DM. Conversely
pr/pw < —1/2 = £ < 0 and the energy transfer occurs from DM to DE.

As already stressed in the previous section, the results in tables 2 and [1 do
not point to a preferred direction of the deviation of the ratio from its canonical
value of 1/2. Therefore there is no preferred sign for £ and the results are largely
consistent with £ = 0. This contrasts with the results found in [IT[13] where
the analysis of the A586 cluster with a top hat profile and weak lensing inferred
velocity dispersion pointed towards £ < 0. In fact, this suggests that changing
the density profile and considering the related methodological difficulties do
not allow for a definite conclusion on the virial ratio. We believe that the
current analysis represents a step forward relative to the original proposal as
it deals with more realistic density profiles and uses uncorrelated data sources
in the estimation of the velocity dispersion. However, in order to distinguish
between the different physical scenarios £ > 0, £ < 0 and £ = 0 it is crucial to
have a better understanding both of the mass distribution within the clusters
and a more importantly a more accurate knowledge of their dynamical state.
This will allow to decrease the error bars and detect putative deviations of the
ratio from —0.5.

(46)

6 Conclusions

In this work we have analyzed the virial equilibrium of clusters A586 and A1689
using four density profiles, namely NFW, isothermal spheres and Moore’s
and Einasto’s profiles. The method employed represents an evolution from
the original proposal as it deals with more realistic mass distributions. For
the A586 cluster we have only found evidence of deviation of the virial ra-
tio px/pw = —1/2 for the over-simplistic Top-Hat density profile, in accor-
dance with [II]. In what concerns cluster A1689, we have not encountered a
convincing evidence of this interaction except when using the uni-parametric
isothermal sphere distribution. This could reflect the claims on A1689 that it
is not a relaxed cluster, in particular, that it exhibits signs of triaxiality [36].
Despite the fact that search for interaction with more realistic mass profiles
has not returned a clear signal in either cluster, one should stress that the
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encountered error bars are still too large at present. In order to study the
interaction between DE and DM via deviations from the virial equilibrium it
is crucial to have a better understanding of the cluster mass distribution and
of their dynamical state. We believe N-body simulations have a crucial role to
play in this problem.
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