568 research outputs found

    Navigating large-scale virtual environments: what differences occur between helmet-mounted and desk-top displays?

    Get PDF
    Participants used a helmet-mounted display (HMD) and a desk-top (monitor) display to learn the layouts of two large-scale virtual environments (VEs) through repeated, direct navigational experience. Both VEs were ‘‘virtual buildings’’ containing more than seventy rooms. Participants using the HMD navigated the buildings significantly more quickly and developed a significantly more accurate sense of relative straight-line distance. There was no significant difference between the two types of display in terms of the distance that participants traveled or the mean accuracy of their direction estimates. Behavioral analyses showed that participants took advantage of the natural, head-tracked interface provided by the HMD in ways that included ‘‘looking around’’more often while traveling through the VEs, and spending less time stationary in the VEs while choosing a direction in which to travel

    Navigating large-scale ‘‘desk-top’’ virtual buildings: effects of orientation aids and familiarity

    Get PDF
    Two experiments investigated components of participants’ spatial knowledge when they navigated large-scale ‘‘virtual buildings’’ using ‘‘desk-top’’ (i.e., nonimmersive) virtual environments (VEs). Experiment 1 showed that participants could estimate directions with reasonable accuracy when they traveled along paths that contained one or two turns (changes of direction), but participants’ estimates were significantly less accurate when the paths contained three turns. In Experiment 2 participants repeatedly navigated two more complex virtual buildings, one with and the other without a compass. The accuracy of participants’ route-finding and their direction and relative straight-line distance estimates improved with experience, but there were no significant differences between the two compass conditions. However, participants did develop significantly more accurate spatial knowledge as they became more familiar with navigating VEs in general

    Optical Spectra of SNR Candidates in NGC 300

    Full text link
    We present moderate-resolution (<5A) long-slit optical spectra of 51 nebular objects in the nearby Sculptor Group galaxy NGC 300 obtained with the 2.3 meter Advanced Technology Telescope at Siding Spring Observatory, Australia. Adopting the criterion of [SII]/Ha>=0.4 to confirm supernova remnants (SNRs) from optical spectra, we find that of 28 objects previously proposed as SNRs from optical observations, 22 meet this criterion with six showing [SII]/Ha of less than 0.4. Of 27 objects suggested as SNRs from radio data, four are associated with the 28 previously proposed SNRs. Of these four, three (included in the 22 above) meet the criterion. In all, 22 of the 51 nebular objects meet the [SII]/Ha criterion as SNRs while the nature of the remaining 29 objects remains undetermined by these observations.Comment: Accepted for publication in Astrophysics & Space Scienc

    When Does Eddy Viscosity Damp Subfilter Scales Sufficiently?

    Get PDF
    Large eddy simulation (LES) seeks to predict the dynamics of spatially filtered turbulent flows. The very essence is that the LES-solution contains only scales of size ≄Δ, where Δ denotes some user-chosen length scale. This property enables us to perform a LES when it is not feasible to compute the full, turbulent solution of the Navier-Stokes equations. Therefore, in case the large eddy simulation is based on an eddy viscosity model we determine the eddy viscosity such that any scales of size <Δ are dynamically insignificant. In this paper, we address the following two questions: how much eddy diffusion is needed to (a) balance the production of scales of size smaller than Δ; and (b) damp any disturbances having a scale of size smaller than Δ initially. From this we deduce that the eddy viscosity Îœe has to depend on the invariants q = Âœtr(S^2) and r =−⅓tr(S^3) of the (filtered) strain rate tensor S. The simplest model is then given by Îœe = 3/2(Δ/π)^2|r|/q. This model is successfully tested for a turbulent channel flow (Reτ = 590).

    First Principles Calculation of Elastic Properties of Solid Argon at High Pressures

    Full text link
    The density and the elastic stiffness coefficients of fcc solid argon at high pressures from 1 GPa up to 80 GPa are computed by first-principles pseudopotential method with plane-wave basis set and the generalized gradient approximation (GGA). The result is in good agreement with the experimental result recently obtained with the Brillouin spectroscopy by Shimizu et al. [Phys. Rev. Lett. 86, 4568 (2001)]. The Cauchy condition was found to be strongly violated as in the experimental result, indicating large contribution from non-central many-body force. The present result has made it clear that the standard density functional method with periodic boundary conditions can be successfully applied for calculating elastic properties of rare gas solids at high pressures in contrast to those at low pressures where dispersion forces are important.Comment: 4 pages, 5 figures, submitted to PR

    Improved tensor-product expansions for the two-particle density matrix

    Full text link
    We present a new density-matrix functional within the recently introduced framework for tensor-product expansions of the two-particle density matrix. It performs well both for the homogeneous electron gas as well as atoms. For the homogeneous electron gas, it performs significantly better than all previous density-matrix functionals, becoming very accurate for high densities and outperforming Hartree-Fock at metallic valence electron densities. For isolated atoms and ions, it is on a par with previous density-matrix functionals and generalized gradient approximations to density-functional theory. We also present analytic results for the correlation energy in the low density limit of the free electron gas for a broad class of such functionals.Comment: 4 pages, 2 figure

    Infuence of the year and HMW glutenin subunits on end-use quality predictors if bread wheat waxy lines

    Full text link
    The effects of environment and the high molecular weight glutenins on some quality properties (sedimentation volume, % protein content, and starch pasting viscosity) of bread wheat mutant waxy lines were evaluated. Thirty-eight 100% amylose-free F 2 derived F 6 and F 7 lines were used. The results indicated that the environment did not influence sedimentation volume, mixograph parameters and starch viscosity parameters of waxy flour. Variation in the % protein content was determined mainly by the environment. The sedimentation volume and the mixograph peak development time were influenced by the variation at over expression of Bx7 and the mixograph peak development time was influenced by the Glu-D1 locus. One starch viscosity parameter, time to peak viscosity, was influenced by variation at the Glu-A1 locus. This parameter is significantly lower in the waxy lines than the parent line, which shows the influence of the waxy loci. No significant correlation was observed for sedimentation volume, mixograph parameters, protein content and viscosity parameters of waxy line
    • 

    corecore