30 research outputs found

    Disruptive and Conventional Technologies for the Support of Logistics Processes: A Literature Review

    Get PDF
    The supply chain has become a key element of increasing the productivity and competitiveness of companies. To achieve this, it is essential to implement a strategy based on the use of technologies, which depends on knowledge of the scope and impact of logistics technologies. Therefore, this article aims to identify the main technologies supporting logistics management and supply chain processes to establish their functionality, scope, and impacts. For this, conventional technologies and technologies framed by the concept of Industry 4.0 that allow the implementation of Logistics 4.0 in companies are analyzed. As a result of searching databases such as Scopus, Web of Science, and Science Direct, we provide an analysis of 18 technologies focusing on their definition, scope, and the logistics processes involved. This study concludes that technologies in logistics management allow for a reduction in total costs, improve collaboration with suppliers and customers, increase the visibility and traceability of products and information, and support decision-making for all agents in the supply chain, including the final consumer

    COVAD survey 2 long-term outcomes: unmet need and protocol

    Get PDF
    Vaccine hesitancy is considered a major barrier to achieving herd immunity against COVID-19. While multiple alternative and synergistic approaches including heterologous vaccination, booster doses, and antiviral drugs have been developed, equitable vaccine uptake remains the foremost strategy to manage pandemic. Although none of the currently approved vaccines are live-attenuated, several reports of disease flares, waning protection, and acute-onset syndromes have emerged as short-term adverse events after vaccination. Hence, scientific literature falls short when discussing potential long-term effects in vulnerable cohorts. The COVAD-2 survey follows on from the baseline COVAD-1 survey with the aim to collect patient-reported data on the long-term safety and tolerability of COVID-19 vaccines in immune modulation. The e-survey has been extensively pilot-tested and validated with translations into multiple languages. Anticipated results will help improve vaccination efforts and reduce the imminent risks of COVID-19 infection, especially in understudied vulnerable groups

    Supernova neutrino detection in NOvA

    Get PDF
    The NOvA long-baseline neutrino experiment uses a pair of large, segmented, liquid-scintillator calorimeters to study neutrino oscillations, using GeV-scale neutrinos from the Fermilab NuMI beam. These detectors are also sensitive to the flux of neutrinos which are emitted during a core-collapse supernova through inverse beta decay interactions on carbon at energies of O(10 MeV). This signature provides a means to study the dominant mode of energy release for a core-collapse supernova occurring in our galaxy. We describe the data-driven software trigger system developed and employed by the NOvA experiment to identify and record neutrino data from nearby galactic supernovae. This technique has been used by NOvA to self-trigger on potential core-collapse supernovae in our galaxy, with an estimated sensitivity reaching out to 10 kpc distance while achieving a detection efficiency of 23% to 49% for supernovae from progenitor stars with masses of 9.6 M☉ to 27 M☉, respectively

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Get PDF
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Major differences of bacterial diversity and activity inside and outside of a natural iron-fertilized phytoplankton bloom in the Southern Ocean

    No full text
    International audienceOne of the first comparisons of a natural iron fertilized bloom with a high‐nutrient low‐chlorophyll (HNLC) site was undertaken during the Kerguelen ocean and plateau compared study (KEOPS) cruise. To understand better the bacteria–phytoplankton relationship in the context of natural iron fertilization, bacterial diversity and activity was investigated in the bloom and in the adjacent HNLC region by 16S rDNA clone libraries and by single strand conformation polymorphism (SSCP) analysis. Both libraries were dominated by Alphaproteobacteria, Gammaproteobacteria and the Cytophaga‐Flavobacteria‐Bacteroides group. Cluster analysis at 99% sequence similarity yielded several microdiverse clusters and revealed striking differences between the two libraries. In the bloom, the dominant operational taxonomic units (OTUs) were the Roseobacter NAC11‐7 cluster, SAR92 and a Cytophaga‐Flavobacteria‐Bacteroides cluster related to the agg58 group, whereas in the HNLC region, SAR11, Roseobacter RCA and Polaribacter dominated. SSCP analysis of 16S rDNA and 16S rRNA revealed contrasting dynamics of three different Roseobacter OTUs. Roseobacter NAC11‐7 and NAC11‐6 had higher relative abundances and activities in the bloom compared with the HNLC site and NAC11‐6 was only detected at the decline of the bloom concomitant with a shift in phytoplankton composi tion. In contrast, Roseobacter RCA was relatively abundant and active both inside and outside of the bloom. These results suggest that the different OTUs within the Roseobacter group represent functional groups that each play an important role in the cycling of carbon
    corecore