226 research outputs found
Tunneling conductance of graphene ferromagnet-insulator-superconductor junctions
We study the transport properties of a graphene ferromagnet-insulator
superconductor (FIS) junction within the Blonder-Tinkham-Klapwijk formalism by
solving spin-polarized Dirac-Bogoliubov-de-Gennes equation. We find that the
retro and specular Andreev reflections in the graphene FIS junction are
drastically modified in the presence of exchange interaction and that the
spin-polarization () of tunneling current can be tuned from the positive
to negative value by bias voltage (). In the thin-barrier limit, the
conductance of a graphene FIS junction oscillates as a function of barrier
strength . Both the amplitude and phase of the conductance oscillation
varies with the exchange energy . For (Fermi energy), the
amplitude of oscillation decreases with . For ,
the amplitude of oscillation increases with , where
( is the applied electrostatic potential on
the superconducting segment of the junction). For , the
amplitude of oscillation decreases with again. Interestingly, a
universal phase difference of in exists between the
curves for and . Finally, we find that the transitions
between retro and specular Andreev reflections occur at and
, and hence the singular behavior of the conductance near
these bias voltages results from the difference in transport properties between
specular and retro Andreev reflections.Comment: Accepted for publication in Physical Review
Carrier-induced ferromagnetism in n-type ZnMnAlO and ZnCoAlO thin films at room temperature
The realization of semiconductors that are ferromagnetic above room
temperature will potentially lead to a new generation of spintronic devices
with revolutionary electrical and optical properties. Transition temperatures
in doped ZnO are high but, particularly for Mn doping, the reported moments
have been small. We show that by careful control of both oxygen deficiency and
aluminium doping the ferromagnetic moments measured at room temperature in
n-type ZnMnO and ZnCoO are close to the ideal values of 5mB and 3mB
respectively. Furthermore a clear correlation between the magnetisation per
transition metal ion and the ratio of the number of carriers to the number of
transition metal donors was established as is expected for carrier induced
ferromagnetism for both the Mn and Co doped films. The dependence of the
magnetisation on carrier density is similar to that predicted for the
transition temperature for a dilute magnetic semiconductor in which the
exchange between the transition metal ions is through the free carriers.Comment: 14 pages pd
Grain boundary effects on magnetotransport in bi-epitaxial films of LaSrMnO
The low field magnetotransport of LaSrMnO (LSMO) films
grown on SrTiO substrates has been investigated. A high qualtity LSMO film
exhibits anisotropic magnetoresistance (AMR) and a peak in the
magnetoresistance close to the Curie temperature of LSMO. Bi-epitaxial films
prepared using a seed layer of MgO and a buffer layer of CeO display a
resistance dominated by grain boundaries. One film was prepared with seed and
buffer layers intact, while a second sample was prepared as a 2D square array
of grain boundaries. These films exhibit i) a low temperature tail in the low
field magnetoresistance; ii) a magnetoconductance with a constant high field
slope; and iii) a comparably large AMR effect. A model based on a two-step
tunneling process, including spin-flip tunneling, is discussed and shown to be
consistent with the experimental findings of the bi-epitaxial films.Comment: REVTeX style; 14 pages, 9 figures. Figure 1 included in jpeg format
(zdf1.jpg); the eps was huge. Accepted to Phys. Rev.
Influenza virus hemagglutinin-specific cytotoxic T cell response induced by polypeptide produced in Escherichia coli
We have tested the abilities of various polypeptides of A/PR/8/34 (H1N1) virus, constructed by recombinant DNA techniques, to induce influenza virus-specific secondary cytotoxic T lymphocyte (CTL) responses. A hybrid protein (c13 protein), consisting of the first 81 amino acids of viral nonstructural protein (NS1) and the HA2 subunit of viral hemagglutinin (HA), induced H-2-restricted, influenza virus subtype-specific secondary CTL in vitro, although other peptides did not. Using a recombinant virus, the viral determinant responsible for recognition was mapped to the HA2 portion of c13 protein. Immunization of mice with c13 protein induced the generation of memory CTL in vivo. The CTL precursor frequencies of A/PR/8/34 virus- and c13 protein-immune mice were estimated as one in 8,047 and 50,312, respectively. These results indicate that c13 protein primed recipient mice, even though the level of precursor frequency was below that observed in virus-immune mice
Operationally Efficient Propulsion System Study (OEPPS)
A description is presented, through view graphs, of the problems encountered in today's launch vehicles and how these problems have adversely affected the ability to achieve serviceability, reliability, and operability. The need is emphasized to recognize and understand the operations problems and the effort that must be made to avoid them in future designs. Technology areas that will enhance operations requirements are also presented
Recommended from our members
Hygroscopic growth and activation of HULIS particles: Experimental data and a new iterative parameterization scheme for complex aerosol particles
The hygroscopic growth and activation of two HULIS (HUmic LIke Substance) and one Aerosol-Water-Extract sample, prepared from urban-type aerosol, were investigated. All samples were extracted from filters, redissolved in water and atomized for the investigations presented here. The hygroscopic growth measurements were done using LACIS (Leipzig Aerosol Cloud Interaction Simulator) together with a HH-TDMA (High Humidity Tandem Differential Mobility Analyzer). Hygroscopic growth was determined for relative humidities (RHs) up to 99.75%. The critical diameters for activation were measured for supersaturations between 0.2 and 1%. All three samples showed a similar hygroscopic growth behavior, and the two HULIS samples also were similar in their activation behavior, while the Aerosol-Water-Extract turned out to be more CCN active than the HULIS samples. The experimental data was used to derive parameterizations for the hygroscopic growth and activation of HULIS particles. The concept of ρion (Wex et al., 2007a) and the Szyszkowski-equation (Szyszkowski, 1908; Facchini, 1999) were used for parameterizing the Raoult and the Kelvin (surface tension) terms of the Köhler equation, respectively. This concept proved to be very successful for the HULIS samples in the saturation range from RHs larger than 98% up to activation. It was also shown to work well with data on HULIS taken from literature. Here, different atmospheric life-times and/or different sources for the different samples showed up in different coefficients for the parameterization. However, the parameterization did not work out well for the Aerosol-Water-Extract
Hygroscopic growth and activation of HULIS particles: experimental data and a new iterative parameterization scheme for complex aerosol particles
International audienceThe hygroscopic growth and activation of two HULIS and one Aerosol-Water-Extract sample, prepared from urban-type aerosol, were investigated. All samples were extracted from filters, redissolved in water and atomized for the investigations presented here. The hygroscopic growth measurements were done using LACIS (Leipzig Aerosol Cloud Interaction Simulator) together with a HH-TDMA (High Humidity Tandem Differential Mobility Analyzer). Hygroscopic growth was determined for relative humidities up to 99.75%. The critical diameters for activation were measured using LACIS for supersaturations between 2 and 10 per mill. All three samples showed a similar hygroscopic growth behaviour, and the two HULIS samples also were similar in their activation behavior, while the Aerosol-Water-Extract turned out to be more CCN active than the HULIS samples. The experimental data was used to derive parameterizations for the hygroscopic growth and activation of HULIS particles. The concept of ?ion (Wex et al., 2007a) and the Szyszkowski-equation (Szyszkowski, 1908; Facchini et al., 1999) were used for parameterizing the Raoult and the Kelvin (surface tension) terms of the Köhler equation, respectively. This concept proved to be very successful for the HULIS samples in the saturation range from relative humidities larger than 98% up to activation. However it failed for the Aerosol-Water extract
- …