545 research outputs found

    Single domain magnetic helicity and triangular chirality in structurally enantiopure Ba3NbFe3Si2O14

    Get PDF
    A novel doubly chiral magnetic order is found out in the structurally chiral langasite compound Ba3_3NbFe3_3Si2_2O14_{14}. The magnetic moments are distributed over planar frustrated triangular lattices of triangle units. On each of these they form the same triangular configuration. This ferro-chiral arrangement is helically modulated from plane to plane. Unpolarized neutron scattering on a single crystal associated with spherical neutron polarimetry proved that a single triangular chirality together with a single helicity is stabilized in an enantiopure crystal. A mean field analysis allows discerning the relevance on this selection of a twist in the plane to plane supersuperexchange paths

    Spatially Anisotropic Heisenberg Kagome Antiferromagnet

    Full text link
    We study the quasi-one-dimensional limit of the spin-1/2 quantum Heisenberg antiferromagnet on the kagome lattice. The lattice is divided into antiferromagnetic spin-chains (exchange J) that are weakly coupled via intermediate "dangling" spins (exchange J'). Using one-dimensional bosonization, renormalization group methods, and current algebra techniques the ground state is determined in the limit J'<<J. We find that the dangling spins and chain spins form a spiral with O(1) and O(J'/J) static moments, respectively, atop of which the chain spins exhibit a smaller O[(J'/J)^2] antiferromagnetically ordered component along the axis perpendicular to the spiral plane.Comment: 17 pages, 3 figures, corrected sign error, corrected typos, updated reference

    Gamma-Ray Spectra & Variability of the Crab Nebula Emission Observed by BATSE

    Full text link
    We report ~ 600 days of BATSE earth-occultation observations of the total gamma-ray (30 keV to 1.7 MeV) emission from the Crab nebula, between 1991 May 24 (TJD 8400) and 1994 October 2 (TJD 9627). Lightcurves from 35-100, 100-200, 200-300, 300-400, 400-700, and 700-1000 keV, show that positive fluxes were detected by BATSE in each of these six energy bands at significances of approximately 31, 20, 9.2, 4.5, 2.6, and 1.3 sigma respectively per day. We also observed significant flux and spectral variations in the 35-300 keV energy region, with time scales of days to weeks. The spectra below 300 keV, averaged over typical CGRO viewing periods of 6-13 days, can be well described by a broken power law with average indices of ~ 2.1 and ~ 2.4 varying around a spectral break at ~ 100 keV. Above 300 keV, the long-term averaged spectra, averaged over three 400 d periods (TJD 8400-8800, 8800-9200, and 9200-9628, respectively) are well represented by the same power law with index of ~ 2.34 up to ~ 670 keV, plus a hard spectral component extending from ~ 670 keV to ~ 1.7 MeV, with a spectral index of ~ 1.75. The latter component could be related to a complex structure observed by COMPTEL in the 0.7-3 MeV range. Above 3 MeV, the extrapolation of the power-law continuum determined by the low-energy BATSE spectrum is consistent with fluxes measured by COMPTEL in the 3-25 MeV range, and by EGRET from 30-50 MeV. We interpret these results as synchrotron emission produced by the interaction of particles ejected from the pulsar with the field in different dynamical regions of the nebula system, as observed recently by HST, XMM-Newton, and Chandra.Comment: To be published in the November 20, 2003, Vol 598 issue of the Astrophysical Journa

    Gamma-ray lines and neutrons from solar flares

    Get PDF
    The energy spectrum of accelerated protons and nuclei at the site of a limb flare was derived by a technique, using observations of the time dependent flux of high energy neutrons at the Earth. This energy spectrum is very similar to the energy spectra of 7 disk flares for which the accelerated particle spectra was previously derived using observations of 4 to 7 MeV to 2.223 MeV fluence ratios. The implied spectra for all of these flares are too steep to produce any significant amount of radiation from pi meson decay. It is suggested that the observed 10 MeV gamma rays from the flare are bremsstrahlung of relativistic electrons

    Vertex Corrections and the Korringa Ratio in Strongly Correlated Electron Materials

    Full text link
    We show that the Korringa ratio, associated with nuclear magnetic resonance in metals, is unity if vertex corrections for the dynamic spin susceptibility are negligible and the hyperfine coupling is momentum independent. In the absence of vertex corrections we also find a Korringa behaviour for T1T_1, the nuclear spin relaxation rate, i.e., 1/T1T1/T_1\propto T, and a temperature independent Knight shift. These results are independent of the form and magnitude of the self-energy (so far as is consistent with neglecting vertex corrections) and of the dimensionality of the system.Comment: 5 pages. accepted for publication in J. Phys.: Condens. Matte

    The Heisenberg antiferromagnet on an anisotropic triangular lattice: linear spin-wave theory

    Full text link
    We consider the effect of quantum spin fluctuations on the ground state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave theory. This model should describe the magnetic properties of the insulating phase of the kappa-(BEDT-TTF)_2 X family of superconducting molecular crystals. The ground state energy, the staggered magnetization, magnon excitation spectra and spin-wave velocities are computed as a function of the ratio between the second and first neighbours, J2/J1. We find that near J2/J1 = 0.5, i.e., in the region where the classical spin configuration changes from a Neel ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. In this region, the quantum correction to the magnetization is large but finite. This is in contrast to the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J2/J1, the model becomes a set of chains with frustrated interchain coupling. For J2 > 4 J1, the quantum correction to the magnetization, within LSW, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustated interchain coupling.Comment: 10 pages, RevTeX + epsf, 5 figures Replaced with published version. Comparison to series expansions energies include

    Effect of Disorder on Fermi surface in Heavy Electron Systems

    Full text link
    The Kondo lattice model with substitutional disorder is studied with attention to the size of the Fermi surface and the associated Dingle temperature. The model serves for understanding heavy-fermion Ce compounds alloyed with La according to substitution Ce{x}La{1-x}. The Fermi surface is identified from the steepest change of the momentum distribution of conduction electrons, and is derived at low enough temperature by the dynamical mean-field theory (DMFT) combined with the coherent potential approximation (CPA). The Fermi surface without magnetic field increases in size with decreasing x from x=1 (Ce end), and disappears at such x that gives the same number of localized spins as that of conduction electrons. From the opposite limit of x=0 (La end), the Fermi surface broadens quickly as x increases, but stays at the same position as that of the La end. With increasing magnetic field, a metamagnetic transition occurs, and the Fermi surface above the critical field changes continuously across the whole range of x. The Dingle temperature takes a maximum around x=0.5. Implication of the results to experimental observation is discussed.Comment: 5 pages, 5 figure

    On the state dependency of fast feedback processes in (palaeo) climate sensitivity

    Get PDF
    Palaeo data have been frequently used to determine the equilibrium (Charney) climate sensitivity SaS^a, and - if slow feedback processes (e.g. land ice-albedo) are adequately taken into account - they indicate a similar range as estimates based on instrumental data and climate model results. Most studies implicitly assume the (fast) feedback processes to be independent of the background climate state, e.g., equally strong during warm and cold periods. Here we assess the dependency of the fast feedback processes on the background climate state using data of the last 800 kyr and a conceptual climate model for interpretation. Applying a new method to account for background state dependency, we find Sa=0.61±0.06S^a=0.61\pm0.06 K(Wm2^{-2})1^{-1} using the latest LGM temperature reconstruction and significantly lower climate sensitivity during glacial climates. Due to uncertainties in reconstructing the LGM temperature anomaly, SaS^a is estimated in the range Sa=0.550.95S^a=0.55-0.95 K(Wm2^{-2})1^{-1}.Comment: submitted to Geophysical Research Letter

    Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on distorted fcc lattice

    Full text link
    The Berry phase due to the spin wavefunction gives rise to the orbital ferromagnetism and anomalous Hall effect in the non-coplanar antiferromagnetic ordered state on face centered cubic (fcc) lattice once the crystal is distorted perpendicular to (1,1,1) or (1,1,0)- plane. The relevance to the real systems γ\gamma-FeMn and NiS2_2 is also discussed.Comment: 4 pages, 3 figure
    corecore