126 research outputs found

    Decay of escherichia coli in soil following the application of biosolids to agricultural land

    Get PDF
    The decay of Escherichia coli in a sandy loam soil, amended with enhanced and conventionally treated biosolids, was investigated in a field experiment following spring and autumn applications of sewage sludge. Control soils, without the application of biosolids, were also examined to determine the background indigenous populations of E. coli which are present in the environment. The survival of indigenous E. coli and populations of E. coli applied to soil in biosolids, is assessed in relation to environmental factors influencing pathogen-decay processes in soil

    Tailoring surface properties, biocompatibility and corrosion behavior of stainless steel by laser induced periodic surface treatment towards developing biomimetic stents

    Get PDF
    Laser-Induced Periodic Surface Structures (LIPSS) holds great potential for regenerative biomedicine. Creating highly precise LIPSS enables to generate biomimetic implant surfaces with improved properties. The present study focuses on the fabrication and investigation of laser-treated stainless steel samples with applied linear LIPSS patterns with grooves made by means of a picosecond laser system using wavelengths of 1064 nm and 532 nm. To investigate properties of the laser-treated surfaces and to understand the basics of cell-surface interactions between the LIPSS and human Umbilical Cord Mesenchymal Stem Cells (UCMSC), flat stainless steel samples with various applied nanopatterns were used. Such LIPSSs demonstrated higher surface roughness, good biocompatibility, lower wettability and higher corrosion resistance compared to the untreated (polished) spec-imens. The surface roughness of laser-treated samples was in microscale that enabled adhesion and migration of endothelial cells, thus increasing the likelihood for endothelialisation. This thereby could reduce the chances for the development of Late Stent Thrombosis (LST) and In-Stent Restenosis (ISR). Furthermore, laser textured surfaces demonstrated an environment supportive for cell attachment, proliferation and alignment with the nanogroves. Therefore, application of the biomimetic nanopatterns could help to overcome frequent post-surgery complications after the stent implantation

    Features of modeling fatty liver disease in rats of different ages based on a high-calorie diet

    Get PDF
    BACKGROUND: The problem of diagnosis, treatment and prevention of fat liver disease (FLD) is one of the actual problems of modern medicine. In this regard, the need for the creation of reliable experimental models of the FLD, which would be as close as possible to the pathogenetic patterns of the development of this disease in humans.AIM: To create an experimental model of FLD and compare the efficiency of its reproduction in rats of different ages.MATERIALS AND METHODS: The study was conducted on male Wistar rats, whose ages at the beginning of the experiment were 3 and 18 months. Control animals were fed a standard diet. The experimental rats were kept on a diet with excess fat (45 %) and carbohydrates (31 %) for 12 weeks. The liver tissue samples were taken for morphological studies of FLD. Histological preparations were made according to the standard technique. Morphometry on digital images of micropreparations was conducted using the computer program Β«IMAGE JΒ». The concentration of lipids, cholesterol, and triglecerides in the liver tissue was determined, and the concentration of ALT in the blood serum was determined. To assess the biophysical properties of the liver tissue, the method of multifrequency bioimpedance measurement was used.RESULTS: The transfer of animals to a high-calorie diet developed by us led to the development of FLD. This was evidenced by an increase of the liver mass, its pale shade and soft consistency. Morphometric signs of FLD were also revealed. Hypertrophy of hepatocytes was observed with a simultaneous decrease in the nuclear-cytoplasmic ratio; accumulation of numerous lipid inclusions in the cytoplasm and the appearance of large lipid droplets replacing the voids of dead hepatocytes. The number of binuclear hepatocytes and nucleolus in the nucleus, the relative area of the sinusoid network were decreased. An increase in the concentration of lipids, cholesterol and triglecerides in the liver tissue of experimental rats, as well as the activity of ALT in the blood serum, was observed. Changes in the bioimpedance measurements of the liver tissue also indicated theΒ  development of severe fatty degeneration of the liver in both young (to a greater extent) and old rats.CONCLUSION: The model of FLD we have advanced based on a combined (fat-carbohydrate) high-calorie diet. It leads to the development of pronounced morphological, biochemical and biophysical signs of this pathology in all experimental rats. The most pronounced manifestations of FLD are observed in young animals

    ВлияниС прСрывистой Π³ΠΈΠΏΠΎ- ΠΈ гипСроксии Π½Π° состояниС рСспираторного ΠΎΡ‚Π΄Π΅Π»Π° Π»Π΅Π³ΠΊΠΈΡ…

    Get PDF
    Summary. An influence of normobaric hypoxic (10 % of oxygen in nitrogen) and hyperoxic (40 % of oxygen in nitrogen) breathing sessions on the respiratory part of the lungs was investigated in rats of 3 month of age. After 28 daily hypoxic sessions, 30 min each, we detected lung hyperinflation, an enlargement of the total alveolar area and reduction in connecting tissue elements in the lungs. After 28 daily hyperoxic sessions, 60 min each, we found reduction in mean diameter, depth, cross-sectional area and the entrance size of alveoli, increased the amount of collagen fibers, the alveolar wall thickness and increased oxyproline concentration in the lungs. These findings could indicate the connecting tissue growth in the respiratory part of the lungs and worsening of oxygen diffusion through the blood-air barrier.РСзюмС. ИсслСдовалось влияниС сСансов дыхания нормобаричСской Π³ΠΈΠΏΠΎ- (10 % кислорода Π² Π°Π·ΠΎΡ‚Π΅) ΠΈ гипСроксичСской (40 % кислорода Π² Π°Π·ΠΎΡ‚Π΅) Π³Π°Π·ΠΎΠ²ΠΎΠΉ смСсью Π½Π° состояниС рСспираторного ΠΎΡ‚Π΄Π΅Π»Π° Π»Π΅Π³ΠΊΠΈΡ… 3-мСсячных крыс. ПослС 28 Π΅ΠΆΠ΅Π΄Π½Π΅Π²Π½Ρ‹Ρ… (ΠΏΠΎ 30 ΠΌΠΈΠ½) сСансов гипоксии ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ»ΠΎΡΡŒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΡΡ‚ΠΈ рСспираторного ΠΎΡ‚Π΄Π΅Π»Π° ΠΈ ΠΎΠ±Ρ‰Π΅ΠΉ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Π°Π»ΡŒΠ²Π΅ΠΎΠ»ΡΡ€Π½ΠΎΠΉ повСрхности, сниТСниС количСства элСмСнтов ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π² Π»Π΅Π³ΠΊΠΈΡ…, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ срСднСго Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π°, Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ сСчСния альвСол, ΡˆΠΈΡ€ΠΈΠ½Ρ‹ Π²Ρ…ΠΎΠ΄Π° Π² Π°Π»ΡŒΠ²Π΅ΠΎΠ»Ρƒ, ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ количСства ΠΊΠΎΠ»Π»Π°Π³Π΅Π½ΠΎΠ²Ρ‹Ρ… Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΠΌΠ΅ΠΆΠ°Π»ΡŒΠ²Π΅ΠΎΠ»ΡΡ€Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅Π³ΠΎΡ€ΠΎΠ΄ΠΊΠΈ ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠ±Ρ‰Π΅Π³ΠΎ оксипролина Π² Π»Π΅Π³ΠΊΠΈΡ…. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΎ разрастании ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π² рСспираторном ΠΎΡ‚Π΄Π΅Π»Π΅ Π»Π΅Π³ΠΊΠΈΡ…, ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΠΈ условий Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ кислорода Ρ‡Π΅Ρ€Π΅Π· аэрогСматичСский Π±Π°Ρ€ΡŒΠ΅Ρ€

    ΠšΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² пСрСривчастої Π½ΠΎΡ€ΠΌΠΎΠ±Π°Ρ€ΠΈΡ‡Π½ΠΎΡ— гіпоксії Ρ‚Π° ΠΌΠ΅Π»Π°Ρ‚ΠΎΠ½Ρ–Π½Ρƒ Π½Π° ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– Π·ΠΌΡ–Π½ΠΈ ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ спонтанно-Π³Ρ–ΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΈΡ… Ρ‰ΡƒΡ€Ρ–Π²

    No full text
    The aim of the study was to investigate the morphological changes in the pancreas of spontaneously hypertensive animals after the combined effect of intermittent normobaric hypoxia (INH) and melatonin.Materials and methods. The study was carried out in spring on 24 spontaneously hypertensive male rats (SHR line). The experimental animals were daily given a hypoxic gas mixture (12 % oxygen in nitrogen) in an intermittent mode: 15 min deoxygenation/15 min reoxygenation for 2 hours. The same rats were daily administered orally with exogenous melatonin at 10.00 at a dose of 5 mg/kg. The duration of the experiment was 28 days. Histological preparations were prepared according to a standard procedure. Morphometry of the digital images of preparations was performed using the computer program ImageJ.Results. Based on changes in morphometric parameters (reduction in the size of acini, exocrinocytes, height of the epithelium), it can be assumed that the combined effect of INH and melatonin reduces the activity of the exocrine function of the pancreas. In the endocrine part of the pancreas of experimental animals morphological signs of its activation were noted: the linear dimensions of the Langerhans islets, the number and the density of their endocrine cells increased. Experimental animals also showed a decrease in the width of interlobular and interacinar interlayers of connective tissue, which can be considered as a manifestation of the mechanism of structural adaptation that facilitates the transport of oxygen and nutrients to the parenchymal elements of the pancreas.Conclusions. The combined effect of intermittent normobaric hypoxia and melatonin leads to the appearance of morphological signs of a decrease in the activity of the exocrine part of the pancreas in hypertensive rats. At the same time, the activity of the endocrine gland function in these animals increased.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ морфологичСскиС измСнСния ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ (ΠŸΠ–) спонтанно-Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½Ρ‹Ρ… крыс послС ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ воздСйствия прСрывистой нормобаричСской гипоксии (ΠŸΠΠ“) ΠΈ ΠΌΠ΅Π»Π°Ρ‚ΠΎΠ½ΠΈΠ½Π°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдованиС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π² вСсСнний ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π½Π° 24 спонтанно-Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½Ρ‹Ρ… крысах-самцах (линия SHR). ΠŸΠΎΠ΄ΠΎΠΏΡ‹Ρ‚Π½Ρ‹ΠΌ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌ Π΅ΠΆΠ΅Π΄Π½Π΅Π²Π½ΠΎ ΠΏΠΎΠ΄Π°Π²Π°Π»ΠΈ Π³ΠΈΠΏΠΎΠΊΡΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π³Π°Π·ΠΎΠ²ΡƒΡŽ смСсь (12 % кислорода Π² Π°Π·ΠΎΡ‚Π΅) Π² прСрывистом Ρ€Π΅ΠΆΠΈΠΌΠ΅: 15 ΠΌΠΈΠ½ΡƒΡ‚ дСоксигСнация/15 ΠΌΠΈΠ½ΡƒΡ‚ рСоксигСнация Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 часов. Π­Ρ‚ΠΈΠΌ ΠΆΠ΅ крысам Π΅ΠΆΠ΅Π΄Π½Π΅Π²Π½ΠΎ Π² 10.00 ΠΏΠ΅Ρ€ΠΎΡ€Π°Π»ΡŒΠ½ΠΎ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ экзогСнный ΠΌΠ΅Π»Π°Ρ‚ΠΎΠ½ΠΈΠ½ Π² Π΄ΠΎΠ·Π΅ 5 ΠΌΠ³/ΠΊΠ³. ΠŸΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ экспСримСнта составляла 28 суток. Из Ρ‚ΠΊΠ°Π½ΠΈ ΠŸΠ– ΠΈΠ·Π³ΠΎΡ‚Π°Π²Π»ΠΈΠ²Π°Π»ΠΈ гистологичСскиС ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ ΠΏΠΎ стандартной ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅. На Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… изобраТСниях ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² осущСствляли ΠΌΠΎΡ€Ρ„ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ ImageJ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. На основании ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ морфомСтричСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ (ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ацинусов, экзокриноцитов, высоты эпитСлия) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ совмСстноС дСйствиС ΠŸΠΠ“ ΠΈ ΠΌΠ΅Π»Π°Ρ‚ΠΎΠ½ΠΈΠ½Π° сниТаСт Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ экзокринной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠŸΠ–. Π’ эндокринной части ΠŸΠ– ΠΏΠΎΠ΄ΠΎΠΏΡ‹Ρ‚Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ морфологичСскиС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ: ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π»ΠΈΡΡŒ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² островков ЛангСрганса, количСство ΠΈ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ размСщСния Π² Π½ΠΈΡ… эндокриноцитов. УстановлСнноС ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ ΡˆΠΈΡ€ΠΈΠ½Ρ‹ прослоСк мСТдольковой ΠΈ мСТацинусной ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ проявлСниС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° структурной Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ ΠΎΠ±Π»Π΅Π³Ρ‡Π΅Π½ΠΈΠ΅ транспорта кислорода ΠΈ ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… вСщСств ΠΊ ΠΏΠ°Ρ€Π΅Π½Ρ…ΠΈΠΌΠ°Ρ‚ΠΎΠ·Π½Ρ‹ΠΌ элСмСнтам ΠŸΠ– ΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π³ΠΎΡ€ΠΌΠΎΠ½ΠΎΠ² Π² ΠΊΡ€ΠΎΠ²ΡŒ.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠšΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ воздСйствиС прСрывистой нормобаричСской гипоксии ΠΈ ΠΌΠ΅Π»Π°Ρ‚ΠΎΠ½ΠΈΠ½Π° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ появлСнию морфологичСских ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² сниТСния активности экзокринной части ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Ρƒ Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½Ρ‹Ρ… крыс. ΠΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ эндокринной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΆΠ΅Π»Π΅Π·Ρ‹ Ρƒ этих ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… возрастаСт.ΠœΠ΅Ρ‚Π° Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ – дослідити ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– Π·ΠΌΡ–Π½ΠΈ ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ (ΠŸΠ—) спонтанно-Π³Ρ–ΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΈΡ… Ρ‚Π²Π°Ρ€ΠΈΠ½ після ΠΊΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ пСрСривчастої Π½ΠΎΡ€ΠΌΠΎΠ±Π°Ρ€ΠΈΡ‡Π½ΠΎΡ— гіпоксії (ΠŸΠΠ“) Ρ– ΠΌΠ΅Π»Π°Ρ‚ΠΎΠ½Ρ–Π½Ρƒ.ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Ρ‚Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. ДослідТСння Π²ΠΈΠΊΠΎΠ½Π°Π»ΠΈ навСсні Π½Π° 24 спонтанно-Π³Ρ–ΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΈΡ… Ρ‰ΡƒΡ€Π°Ρ…-самцях (лінія SHR). ΠŸΡ–Π΄Π΄ΠΎΡΠ»Ρ–Π΄Π½ΠΈΠΌ Ρ‚Π²Π°Ρ€ΠΈΠ½Π°ΠΌ щодня ΠΏΠΎΠ΄Π°Π²Π°Π»ΠΈ гіпоксичну Π³Π°Π·ΠΎΠ²Ρƒ ΡΡƒΠΌΡ–Ρˆ (12 % кисню Π² Π°Π·ΠΎΡ‚Ρ–) Π² пСрСривчастому Ρ€Π΅ΠΆΠΈΠΌΡ–: 15 Ρ…Π²ΠΈΠ»ΠΈΠ½ дСоксигСнація/15 Ρ…Π²ΠΈΠ»ΠΈΠ½ рСоксигСнація протягом 2 Π³ΠΎΠ΄ΠΈΠ½. Π¦ΠΈΠΌ самим Ρ‰ΡƒΡ€Π°ΠΌ щодня ΠΏΠ΅Ρ€ΠΎΡ€Π°Π»ΡŒΠ½ΠΎ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π΅ΠΊΠ·ΠΎΠ³Π΅Π½Π½ΠΈΠΉ ΠΌΠ΅Π»Π°Ρ‚ΠΎΠ½Ρ–Π½ ΠΎ 10.00 Ρƒ Π΄ΠΎΠ·Ρ– 5 ΠΌΠ³/ΠΊΠ³. Π’Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŒ СкспСримСнту – 28 Π΄Ρ–Π±. Π— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ ΠŸΠ— виготовляли гістологічні ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈ Π·Π° ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΠΎΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ. На Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΈΡ… зобраТСннях ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² Π·Π΄Ρ–ΠΉΡΠ½ΡŽΠ²Π°Π»ΠΈ ΠΌΠΎΡ€Ρ„ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–ΡŽ Π·Π° допомогою ΠΊΠΎΠΌΠΏβ€™ΡŽΡ‚Π΅Ρ€Π½ΠΎΡ— ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΈ ImageJ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. На підставі Π·ΠΌΡ–Π½ ΠΌΠΎΡ€Ρ„ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² (змСншСння Ρ€ΠΎΠ·ΠΌΡ–Ρ€Ρ–Π² ацинусів, Π΅ΠΊΠ·ΠΎΠΊΡ€ΠΈΠ½ΠΎΡ†ΠΈΡ‚Ρ–Π², висоти Π΅ΠΏΡ–Ρ‚Π΅Π»Ρ–ΡŽ) ΠΌΠΎΠΆΠ½Π° припустити, Ρ‰ΠΎ ΠΏΠΎΡ”Π΄Π½Π°Π½Π° дія ΠŸΠΠ“ Ρ– ΠΌΠ΅Π»Π°Ρ‚ΠΎΠ½Ρ–Π½Ρƒ Π·Π½ΠΈΠΆΡƒΡ” Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π΅ΠΊΠ·ΠΎΠΊΡ€ΠΈΠ½Π½ΠΎΡ— Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— ΠŸΠ—. Π’ Π΅Π½Π΄ΠΎΠΊΡ€ΠΈΠ½Π½Ρ–ΠΉ частині ΠŸΠ— дослідних Ρ‚Π²Π°Ρ€ΠΈΠ½ виявили ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΎΠ·Π½Π°ΠΊΠΈ Ρ—Ρ— Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†Ρ–Ρ—: Π·Π±Ρ–Π»ΡŒΡˆΠΈΠ»ΠΈΡΡ Π»Ρ–Π½Ρ–ΠΉΠ½Ρ– Ρ€ΠΎΠ·ΠΌΡ–Ρ€ΠΈ острівців ЛангСрганса, ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ Ρ– Ρ‰Ρ–Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ розміщСння Ρƒ Π½ΠΈΡ… Π΅Π½Π΄ΠΎΠΊΡ€ΠΈΠ½ΠΎΡ†ΠΈΡ‚Ρ–Π². ВстановлСнС змСншСння ΡˆΠΈΡ€ΠΈΠ½ΠΈ ΠΏΡ€ΠΎΡˆΠ°Ρ€ΠΊΡ–Π² міТчасточкової Ρ‚Π° міТацинусної сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ ΠΌΠΎΠΆΠ½Π° Π²Π²Π°ΠΆΠ°Ρ‚ΠΈ проявом ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡƒ структурної Π°Π΄Π°ΠΏΡ‚Π°Ρ†Ρ–Ρ—, Ρ‰ΠΎ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” полСгшСння транспорту кисню Ρ‚Π° ΠΏΠΎΠΆΠΈΠ²Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Π΄ΠΎ ΠΏΠ°Ρ€Π΅Π½Ρ…Ρ–ΠΌΠ°Ρ‚ΠΎΠ·Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² ΠŸΠ— Ρ– виділСння Π³ΠΎΡ€ΠΌΠΎΠ½Ρ–Π² Ρƒ ΠΊΡ€ΠΎΠ².Висновки. ΠšΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² пСрСривчастої Π½ΠΎΡ€ΠΌΠΎΠ±Π°Ρ€ΠΈΡ‡Π½ΠΎΡ— гіпоксії Ρ‚Π° ΠΌΠ΅Π»Π°Ρ‚ΠΎΠ½Ρ–Π½Ρƒ ΠΌΠ°Ρ” ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΎΠ·Π½Π°ΠΊΠΈ зниТСння активності Π΅ΠΊΠ·ΠΎΠΊΡ€ΠΈΠ½Π½ΠΎΡ— частини ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ Π² Π³Ρ–ΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΈΡ… Ρ‰ΡƒΡ€Ρ–Π². Водночас Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π΅Π½Π΄ΠΎΠΊΡ€ΠΈΠ½Π½ΠΎΡ— Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— Π·Π°Π»ΠΎΠ·ΠΈ Π² Ρ†ΠΈΡ… Ρ‚Π²Π°Ρ€ΠΈΠ½ зростає
    • …
    corecore