671 research outputs found

    Quenched QCD with O(a) improvement: I. The spectrum of light hadrons

    Get PDF
    We present a comprehensive study of the masses of pseudoscalar and vector mesons, as well as octet and decuplet baryons computed in O(a) improved quenched lattice QCD. Results have been obtained using the non-perturbative definition of the improvement coefficient c_sw, and also its estimate in tadpole improved perturbation theory. We investigate effects of improvement on the incidence of exceptional configurations, mass splittings and the parameter J. By combining the results obtained using non-perturbative and tadpole improvement in a simultaneous continuum extrapolation we can compare our spectral data to experiment. We confirm earlier findings by the CP-PACS Collaboration that the quenched light hadron spectrum agrees with experiment at the 10% level.Comment: 36 pages, 7 postscript figures, REVTEX; typo in Table XVIII corrected; extended discussion of finite-size effects in sections III and VII; version to appear in Phys. Rev.

    ACVIM consensus statement on the treatment of immune-mediated hemolytic anemia in dogs

    Get PDF
    Immune‐mediated hemolytic anemia (IMHA) causes severe anemia in dogs and is associated with considerable morbidity and mortality. Treatment with various immunosuppressive and antithrombotic drugs has been described anecdotally and in previous studies, but little consensus exists among veterinarians as to the optimal regimen to employ and maintain after diagnosis of the disease. To address this inconsistency and provide evidence‐based guidelines for treatment of IMHA in dogs, we identified and extracted data from studies published in the veterinary literature. We developed a novel tool for evaluation of evidence quality, using it to assess study design, diagnostic criteria, explanation of treatment regimens, and validity of statistical methods. In combination with our clinical experience and comparable guidelines for humans afflicted with autoimmune hemolytic anemia, we used the conclusions of this process to make a set of clinical recommendations regarding treatment of IMHA in dogs, which we refined subsequently by conducting several iterations of Delphi review. Additionally, we considered emerging treatments for IMHA in dogs and highlighted areas deserving of future research. Comments were solicited from several professional bodies to maximize clinical applicability before the recommendations were submitted for publication. The resulting document is intended to provide clinical guidelines for management of IMHA in dogs. These guidelines should be implemented pragmatically, with consideration of animal, owner, and veterinary factors that may vary among cases

    On the glueball spectrum in O(a)-improved lattice QCD

    Full text link
    We calculate the light `glueball' mass spectrum in N_f=2 lattice QCD using a fermion action that is non-perturbatively O(a) improved. We work at lattice spacings a ~0.1 fm and with quark masses that range down to about half the strange quark mass. We find the statistical errors to be moderate and under control on relatively small ensembles. We compare our mass spectrum to that of quenched QCD at the same value of a. Whilst the tensor mass is the same (within errors), the scalar mass is significantly smaller in the dynamical lattice theory, by a factor of ~(0.84 +/- 0.03). We discuss what the observed m_q dependence of this suppression tells us about the dynamics of glueballs in QCD. We also calculate the masses of flux tubes that wind around the spatial torus, and extract the string tension from these. As we decrease the quark mass we see a small but growing vacuum expectation value for the corresponding flux tube operators. This provides clear evidence for `string breaking' and for the (expected) breaking of the associated gauge centre symmetry by sea quarks.Comment: 33pp LaTeX. Version to appear in Phys. Rev.

    Low Velocity Ionized Winds from Regions Around Young O Stars

    Get PDF
    We have observed seven ultracompact HII regions in hydrogen recombination lines in the millimeter band. Toward four of these regions, there is a high velocity (full width to half maximum 60-80 km/s) component in the line profiles. The high velocity gas accounts for 35-70% of the emission measure within the beam. We compare these objects to an additional seven similar sources we have found in the literature. The broad recombination line objects (BRLOs) make up about 30% of all sources in complexes containing ultracompact HII regions. Comparison of spectral line and continuum data implies that the BRLOs coincide with sources with rising spectral indices, >=0.4 up to 100 GHz. Both the number of BRLOs and their frequency of occurrence within HII region complexes, when coupled with their small size and large internal motions, mean that the apparent contradiction between the dynamical and population lifetimes for BRLOs is even more severe than for ultracompact HII regions. We evaluate a number of models for the origin of the broad recombination line emission. The lifetime, morphology, and rising spectral index of the sources argue for photo- evaporated disks as the cause for BRLOs. Existing models for such regions, however, do not account for the large amounts of gas observed at supersonic velocities.Comment: 36 pages, 8 figure

    Effects of non-perturbatively improved dynamical fermions in QCD at fixed lattice spacing

    Get PDF
    We present results for the static inter-quark potential, lightest glueballs, light hadron spectrum and topological susceptibility using a non-perturbatively improved action on a 163×3216^3\times 32 lattice at a set of values of the bare gauge coupling and bare dynamical quark mass chosen to keep the lattice size fixed in physical units (1.7\sim 1.7 fm). By comparing these measurements with a matched quenched ensemble, we study the effects due to two degenerate flavours of dynamical quarks. With the greater control over residual lattice spacing effects which these methods afford, we find some evidence of charge screening and some minor effects on the light hadron spectrum over the range of quark masses studied (MPS/MV0.58M_{PS}/M_{V}\ge0.58). More substantial differences between quenched and unquenched simulations are observed in measurements of topological quantities.Comment: 53 pages, LaTeX/RevTeX, 16 eps figures; corrected clover action expression and various typos, no results change

    HQET at order 1/m1/m: II. Spectroscopy in the quenched approximation

    Get PDF
    Using Heavy Quark Effective Theory with non-perturbatively determined parameters in a quenched lattice calculation, we evaluate the splittings between the ground state and the first two radially excited states of the BsB_s system at static order. We also determine the splitting between first excited and ground state, and between the BsB_s^* and BsB_s ground states to order 1/mb1/m_b. The Generalized Eigenvalue Problem and the use of all-to-all propagators are important ingredients of our approach.Comment: (1+18) pages, 3 figures (4 pdf files); pdflatex; v2: corrections to table 1, results unaffecte

    Fermion Masses and Mixing in Extended Technicolor Models

    Full text link
    We study fermion masses and mixing angles, including the generation of a seesaw mechanism for the neutrinos, in extended technicolor (ETC) theories. We formulate an approach to these problems that relies on assigning right-handed Q=1/3Q=-1/3 quarks and charged leptons to ETC representations that are conjugates of those of the corresponding left-handed fermions. This leads to a natural suppression of these masses relative to the Q=2/3Q=2/3 quarks, as well as the generation of quark mixing angles, both long-standing challenges for ETC theories. Standard-model-singlet neutrinos are assigned to ETC representations that provide a similar suppression of neutrino Dirac masses, as well as the possibility of a realistic seesaw mechanism with no mass scale above the highest ETC scale of roughly 10310^3 TeV. A simple model based on the ETC group SU(5) is constructed and analyzed. This model leads to non-trivial, but not realistic mixing angles in the quark and lepton sectors. It can also produce sufficiently light neutrinos, although not simultaneously with a realistic quark spectrum. We discuss several aspects of the phenomenology of this class of models.Comment: 74 pages, revtex with embedded figure

    Strong CH+ J=1-0 emission and absorption in DR21

    Get PDF
    We report the first detection of the ground-state rotational transition of the methylidyne cation CH+ towards the massive star-forming region DR21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption features associated with the DR21 molecular ridge and foreground gas. These observations allow us to determine a CH+ J=1-0 line frequency of 835137 +/- 3 MHz, in good agreement with a recent experimental determination. We estimate the CH+ column density to be a few 1e13 cm^-2 in the gas seen in emission, and > 1e14 cm^-2 in the components responsible for the absorption, which is indicative of a high line of sight average abundance [CH+]/[H] > 1.2x10^-8. We show that the CH+ column densities agree well with the predictions of state-of-the-art C-shock models in dense UV-illuminated gas for the emission line, and with those of turbulent dissipation models in diffuse gas for the absorption lines.Comment: Accepted for publication in A&
    corecore