95 research outputs found

    Structural and Magnetic Characterization of Large Area, Free-Standing Thin Films of Magnetic Ion Intercalated Dichalcogenides Mn0.25TaS2 and Fe0.25TaS2

    Get PDF
    Free-standing thin films of magnetic ion intercalated transition metal dichalcogenides are produced using ultramicrotoming techniques. Films of thicknesses ranging from 30nm to 250nm were achieved and characterized using transmission electron diffraction and X-ray magnetic circular dichroism. Diffraction measurements visualize the long range crystallographic ordering of the intercalated ions, while the dichroism measurements directly assess the orbital contributions to the total magnetic moment. We thus verify the unquenched orbital moment in Fe0.25TaS2 and measure the fully quenched orbital contribution in Mn0.25TaS2. Such films can be used in a wide variety of ultrafast X-ray and electron techniques that benefit from transmission geometries, and allow measurements of ultrafast structural, electronic, and magnetization dynamics in space and time

    Correlation energy of an electron gas in strong magnetic fields at high densities

    Full text link
    The high-density electron gas in a strong magnetic field B and at zero temperature is investigated. The quantum strong-field limit is considered in which only the lowest Landau level is occupied. It is shown that the perturbation series of the ground-state energy can be represented in analogy to the Gell-Mann Brueckner expression of the ground-state energy of the field-free electron gas. The role of the expansion parameter is taken by r_B= (2/3 \pi^2) (B/m^2) (\hbar r_s /e)^3 instead of the field-free Gell-Mann Brueckner parameter r_s. The perturbation series is given exactly up to o(r_B) for the case of a small filling factor for the lowest Landau level.Comment: 10 pages, Accepted for publication in Phys.Rev.

    Matter in Strong Magnetic Fields

    Full text link
    The properties of matter are significantly modified by strong magnetic fields, B>>2.35×109B>>2.35\times 10^9 Gauss (1G=104Tesla1 G =10^{-4} Tesla), as are typically found on the surfaces of neutron stars. In such strong magnetic fields, the Coulomb force on an electron acts as a small perturbation compared to the magnetic force. The strong field condition can also be mimicked in laboratory semiconductors. Because of the strong magnetic confinement of electrons perpendicular to the field, atoms attain a much greater binding energy compared to the zero-field case, and various other bound states become possible, including molecular chains and three-dimensional condensed matter. This article reviews the electronic structure of atoms, molecules and bulk matter, as well as the thermodynamic properties of dense plasma, in strong magnetic fields, 109G<<B<1016G10^9G << B < 10^{16}G. The focus is on the basic physical pictures and approximate scaling relations, although various theoretical approaches and numerical results are also discussed. For the neutron star surface composed of light elements such as hydrogen or helium, the outermost layer constitutes a nondegenerate, partially ionized Coulomb plasma if B<<1014GB<<10^{14}G, and may be in the form of a condensed liquid if the magnetic field is stronger (and temperature <106<10^6 K). For the iron surface, the outermost layer of the neutron star can be in a gaseous or a condensed phase depending on the cohesive property of the iron condensate.Comment: 45 pages with 9 figures. Many small additions/changes. Accepted for publication in Rev. Mod. Phy

    The clinical relevance of oliguria in the critically ill patient : Analysis of a large observational database

    Get PDF
    Funding Information: Marc Leone reports receiving consulting fees from Amomed and Aguettant; lecture fees from MSD, Pfizer, Octapharma, 3 M, Aspen, Orion; travel support from LFB; and grant support from PHRC IR and his institution. JLV is the Editor-in-Chief of Critical Care. The other authors declare that they have no relevant financial interests. Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Urine output is widely used as one of the criteria for the diagnosis and staging of acute renal failure, but few studies have specifically assessed the role of oliguria as a marker of acute renal failure or outcomes in general intensive care unit (ICU) patients. Using a large multinational database, we therefore evaluated the occurrence of oliguria (defined as a urine output 16 years) patients in the ICON audit who had a urine output measurement on the day of admission were included. To investigate the association between oliguria and mortality, we used a multilevel analysis. Results: Of the 8292 patients included, 2050 (24.7%) were oliguric during the first 24 h of admission. Patients with oliguria on admission who had at least one additional 24-h urine output recorded during their ICU stay (n = 1349) were divided into three groups: transient - oliguria resolved within 48 h after the admission day (n = 390 [28.9%]), prolonged - oliguria resolved > 48 h after the admission day (n = 141 [10.5%]), and permanent - oliguria persisting for the whole ICU stay or again present at the end of the ICU stay (n = 818 [60.6%]). ICU and hospital mortality rates were higher in patients with oliguria than in those without, except for patients with transient oliguria who had significantly lower mortality rates than non-oliguric patients. In multilevel analysis, the need for RRT was associated with a significantly higher risk of death (OR = 1.51 [95% CI 1.19-1.91], p = 0.001), but the presence of oliguria on admission was not (OR = 1.14 [95% CI 0.97-1.34], p = 0.103). Conclusions: Oliguria is common in ICU patients and may have a relatively benign nature if only transient. The duration of oliguria and need for RRT are associated with worse outcome.publishersversionPeer reviewe

    Temporal changes in the epidemiology, management, and outcome from acute respiratory distress syndrome in European intensive care units: a comparison of two large cohorts

    Get PDF
    Background: Mortality rates for patients with ARDS remain high. We assessed temporal changes in the epidemiology and management of ARDS patients requiring invasive mechanical ventilation in European ICUs. We also investigated the association between ventilatory settings and outcome in these patients. Methods: This was a post hoc analysis of two cohorts of adult ICU patients admitted between May 1–15, 2002 (SOAP study, n = 3147), and May 8–18, 2012 (ICON audit, n = 4601 admitted to ICUs in the same 24 countries as the SOAP study). ARDS was defined retrospectively using the Berlin definitions. Values of tidal volume, PEEP, plateau pressure, and FiO2 corresponding to the most abnormal value of arterial PO2 were recorded prospectively every 24&nbsp;h. In both studies, patients were followed for outcome until death, hospital discharge or for 60&nbsp;days. Results: The frequency of ARDS requiring mechanical ventilation during the ICU stay was similar in SOAP and ICON (327[10.4%] vs. 494[10.7%], p = 0.793). The diagnosis of ARDS was established at a median of 3 (IQ: 1–7) days after admission in SOAP and 2 (1–6) days in ICON. Within 24&nbsp;h of diagnosis, ARDS was mild in 244 (29.7%), moderate in 388 (47.3%), and severe in 189 (23.0%) patients. In patients with ARDS, tidal volumes were lower in the later (ICON) than in the earlier (SOAP) cohort. Plateau and driving pressures were also lower in ICON than in SOAP. ICU (134[41.1%] vs 179[36.9%]) and hospital (151[46.2%] vs 212[44.4%]) mortality rates in patients with ARDS were similar in SOAP and ICON. High plateau pressure (&gt; 29 cmH2O) and driving pressure (&gt; 14 cmH2O) on the first day of mechanical ventilation but not tidal volume (&gt; 8&nbsp;ml/kg predicted body weight [PBW]) were independently associated with a higher risk of in-hospital death. Conclusion: The frequency of and outcome from ARDS remained relatively stable between 2002 and 2012. Plateau pressure &gt; 29 cmH2O and driving pressure &gt; 14 cmH2O on the first day of mechanical ventilation but not tidal volume &gt; 8&nbsp;ml/kg PBW were independently associated with a higher risk of death. These data highlight the continued burden of ARDS and provide hypothesis-generating data for the design of future studies

    193 nm laser induced luminescence in oxide thin films

    No full text
    Time resolved luminescence experiments have been set up in order to study the interaction of 193 nm laser radiation with dielectric thin films. At room temperature, Al2O3 coatings show photoluminescence upon ArF excimer laser irradiation with significant intensity contribution besides known substrate emission. Time and energy resolved measurements indicate oxygen defect centers in Al2O3 coatings, which suggest a strong single photon interaction at 193 nm by F+ and F center absorption. Measurements on high reflective thin film stacks, consisting of quarter wave Al2O3 and SiO2 layers, indicate similar UV excitations mainly from color centers of Al2O3

    Deep UV laser induced luminescence in oxide thin films

    No full text
    corecore