79 research outputs found
New constraints on the major neutron source in low-mass AGB stars
We compare updated Torino postprocessing asymptotic giant branch (AGB)
nucleosynthesis model calculations with isotopic compositions of mainstream SiC
dust grains from low-mass AGB stars. Based on the data-model comparison, we
provide new constraints on the major neutron source, 13C({\alpha},n)16O in the
He-intershell, for the s-process. We show that the literature Ni, Sr, and Ba
grain data can only be consistently explained by the Torino model calculations
that adopt the recently proposed magnetic-buoyancy-induced 13C-pocket. This
observation provides strong support to the suggestion of deep mixing of H into
the He-intershell at low 13C concentrations as a result of efficient transport
of H through magnetic tubes.Comment: ApJ, accepte
Carbon-rich presolar grains from massive stars : subsolar ¹²C/¹³C and ¹⁴N/¹⁵N ratios and the mystery of ¹⁵N
Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing ¹²C/¹³C and ¹⁴N/¹⁵N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of ¹³C and ¹⁵N. The short-lived radionuclides ²²Na and ²⁶Al are increased by orders of magnitude. The production of radiogenic ²²Ne from the decay of ²²Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with ¹⁴N/¹⁵N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of ¹⁴N and ¹⁵N in the Galaxy, helping to produce the ¹⁴N/¹⁵N ratio in the solar system
Chronology of martian breccia NWA 7034 and the formation of the martian crustal dichotomy
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). The attached file is the published version of the article
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
We report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB
(14N/15N<solar, AB1) and their correlated Sr and Ba isotope ratios when
available. Eight of the 16 AB1 grains show s-process Mo isotopic compositions,
together with s-process Ba and/or Sr isotopic compositions. We found that a
higher percentage of AB1 grains show anomalous isotopic compositions than that
of AB2 grains (14N/15N>solar), thus providing further support to the division
of the two AB subgroups recently proposed by Liu et al. (2017a), who showed
that AB1 grains most likely originated from Type II supernovae (SNe) with
explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of
the AB1 grains with SN model predictions indicates that the s-process isotopic
compositions of AB1 grains resulted from neutron-capture processes occurring
during the progenitor massive stars' pre-SN evolution rather than from an
explosive neutron-capture process. In addition, the observations of (1)
explosive H burning occurring in the C-rich regions of the progenitor SNe of SN
X grains as suggested by the isotopic compositions of X grains, and (2)
explosive H burning occurring both at the bottom of the He/C zone and at the
top of the He/N zone as suggested by model simulations, imply that explosive H
burning is a common phenomenon in outer SN zones.Comment: ApJ, in pres
Application of a theory and simulation-based convective boundary mixing model for AGB star evolution and nucleosynthesis
The s-process nucleosynthesis in Asymptotic giant branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up (TDU), where the ¹³C pocket for the s process in AGB stars forms. In this work, we apply a CBM model motivated by simulations and theory to models with initial mass M=2 and M = 3 Mʘ, and with initial metal content Z = 0.01 and Z = 0.02. As reported previously, the He-intershell abundances of ¹²C and ¹⁶O are increased by CBM at the bottom of the pulse-driven convection zone. This mixing is affecting the ²²Ne(α, n)²⁵Mg activation and the s-process efficiency in the ¹³C-pocket. In our model, CBM at the bottom of the convective envelope during the TDU represents gravity wave mixing. Furthermore, we take into account the fact that hydrodynamic simulations indicate a declining mixing efficiency that is already about a pressure scale height from the convective boundaries, compared to mixing-length theory. We obtain the formation of the ¹³C-pocket with a mass of ≈10⁻⁴ Mʘ. The final s-process abundances are characterized by 0.36 < [s Fe] < 0.78 and the heavy-to-light s-process ratio is -0.23 < [hs ls] < 0.45. Finally, we compare our results with stellar observations, presolar grain measurements and previous work
NuGrid stellar data set. 1. Stellar yields from H to Bi for stars with metallicities Z=0.02 and Z=0.01
We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z = 0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the ¹³C pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
- …
