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Chronology of martian breccia NWA 7034 and the
formation of the martian crustal dichotomy
William S. Cassata,1* Benjamin E. Cohen,2,3 Darren F. Mark,2,4 Reto Trappitsch,1 Carolyn A. Crow,1

Joshua Wimpenny,1 Martin R. Lee,3 Caroline L. Smith3,5

Martian meteorite Northwest Africa (NWA) 7034 and its paired stones are the only brecciated regolith samples from
Mars with compositions that are representative of the average martian crust. These samples therefore provide a
unique opportunity to constrain the processes of metamorphism and alteration in the martian crust, which we have
investigated via U-Pu/Xe, 40Ar/39Ar, and U-Th-Sm/He chronometry. U-Pu/Xe ages are comparable to previously re-
ported Sm-Nd and U-Pb ages obtained from NWA 7034 and confirm an ancient (>4.3 billion years) age for the source
lithology. After almost 3000 million years (Ma) of quiescence, the source terrain experienced several hundred million
years of thermal metamorphism recorded by the K-Ar system that appears to have varied both spatially and tempo-
rally. Such protractedmetamorphism is consistent with plume-relatedmagmatism and suggests that the source terrain
covered an areal extent comparable to plume-fed edifices (hundreds of square kilometers). The retention of such expan-
sive, ancient volcanic terrains in the southern highlands over billions of years suggests that formation of the martian
crustal dichotomy, a topographic andgeophysical dividebetween theheavily cratered southernhighlandsandsmoother
plains of the northern lowlands, likely predates emplacement of the NWA 7034 source terrain—that is, it formed within
the first ~100 Ma of planetary formation.
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INTRODUCTION
Northwest Africa (NWA) 7034 and its paired stones (NWA 7475,
NWA 7533, NWA 7906, NWA 7907, NWA 8114, NWA 8171,
NWA 8674, NWA 10922, NWA 11220, NWA 11522, and Rabt Sbayta
003) are the oldest and most diverse of the martian meteorites (data
obtained fromNWA7034 and its paired stones are not distinguished
in the text). These polymict regolith breccias contain predominantly
igneous clasts and mineral fragments, with minor impact melt and
proto-breccia clasts (1).NWA7034 and its pairings are the onlymartian
meteorites identified to date with major element compositions that are
comparable to the average martian crust (2). Moreover, the stones con-
tain secondary alteration minerals associated with aqueous processes
that may have been widespread in the martian crust [for example, the
studies of Liu et al. (3) andWittmann et al. (4)]. As such, better con-
straints on the thermal history of NWA 7034 may shed light on the
nature and extent of near-surface metamorphism and the duration
and temperatures of aqueous alteration on Mars.

Igneous clasts and matrix minerals in NWA 7034 define a Sm-Nd
isochron age of 4420± 70million years (Ma), which suggests the various
lithological components formed contemporaneously (5). U-Pb ages
obtained frommineral fragments define two populations of ages. “Old”
ages obtained from baddelyite and zircon crystals range from 4428 ± 50
to 4311 ± 52 Ma (Fig. 1) (2, 6–8). “Young” ages obtained from phos-
phates and metamict zircons range from 1712 ± 170 to 1345 ± 47 Ma
(Fig. 1) (2, 6–9). Although the oldU-Pb and Sm-Nd ages are statistically
indistinguishable, the young zircon and phosphate ages indicate that
one ormoremetamorphic events occurred at ~1700 to 1300Ma, result-
ing in partial resetting of the U-Pb system. K-Ar and 40Ar/39Ar ages of
1560 Ma (10) and 1285 ± 8 Ma (11), respectively, further attest to
thermal processing at that time (Fig. 1).
Younger radiometric ages (1700 to 1300 Ma) have generally been
interpreted as dating a singlemetamorphic event associatedwith breccia-
tion [for example, see Nyquist et al. (5) and McCubbin et al. (6)]. How-
ever, the ages appear to differ beyond analytical uncertainties, and it is
unclear whether the disparity reflects systematic uncertainties in the
data sets or, alternatively, amore protracted brecciation ormetamorphic
history. Further complicating the chronology, NWA 7034 yields an ap-
parent U-Th/He age of 170 Ma (10). The U-Th-Sm/He system is un-
likely to have been reset during ejection because NWA 7034 is only
shocked to 5 to 15 GPa (discussed in more detail below) (4). It thus ap-
pears that at least one additionalmetamorphic eventmay have occurred
between ~1300 Ma and ejection (12).

Here, we report 40Ar/39Ar, U-Th-Sm/He, and U-Pu/Xe ages ob-
tained from whole-rock fragments and mineral separates to better con-
strain the impact and metamorphic history of NWA 7034. The
chronometers span a wide range of closure temperatures and are there-
fore sensitive to different metamorphic conditions (13–15). To explore
clast-to-clast variations in metamorphic ages, we selected a total of
4 feldspar mineral separates and 13 individual matrix/clast chips from
visibly monomict fragments for 40Ar/39Ar measurements. In addition,
we measured He, Ne, Ar, Kr, and Xe isotopes to better constrain the
conditions of brecciation and ejection fromMars. Collectively, the data
suggest that metamorphism at 1500 to 1200 Ma is associated with pro-
tracted magmatic activity, and brecciation occurred much later (after
~225 Ma). A corollary of this interpretation is that the ancient source
terrain of NWA 7034 was preserved essentially intact since emplace-
ment, likely requiring that themartian crustal dichotomy formed before
~4400 Ma.
MATERIALS AND METHODS
Whole-rock fragments andmineral separates were analyzed for 40Ar/39Ar
chronometry in the Livermore Noble Gas Lab at Lawrence Livermore
National Laboratory (LLNL) and the Natural Environment Research
Council (NERC) Argon Isotope Facility, Scottish Universities
Environmental Research Centre (SUERC). Aliquots analyzed at LLNL
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are from NWA 7034, whereas those analyzed at SUERC are from
NWA 11522. A total of 4 feldspar mineral separates and 13 individual
matrix/clast chips (weighing ~0.1 to 2.5 mg) from visibly monomict
fragments were selected for 40Ar/39Armeasurements (fig. S1). He, Ne,
Ar, Kr, and Xe isotopes were analyzed in larger, polymict whole-rock
fragments (4 to 22 mg) in the Livermore Noble Gas Lab to calculate
U-Th-Sm/He, U-Pu/Xe, and cosmic ray exposure (CRE) ages and to
determine the isotopic composition of trapped noble gas components.
Ar, Kr, and Xe data from three aliquots (LLNL-UI-1, LLNL-UI-2, and
Cassata et al., Sci. Adv. 2018;4 : eaap8306 23 May 2018
LLNL-UI-3) are fromCassata (16) (see SupplementaryMaterials). After
noble gas extractions, the polymict whole-rock fragments were digested
inmineral acids (HF-HNO3-HCl) for major and trace element concen-
tration measurements, which were performed at LLNL using a Thermo
Scientific Element XR inductively coupled plasma mass spectrometer
(ICP-MS). ForU concentrations, samples were spikedwith a high-purity
233U spike and chemical purified from the bulk dissolutions. U-Th-Sm/
He and U-Pu/Xe ages were calculated using the sample-specific chem-
ical compositions determined by ICP-MS (see Supplementary
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Fig. 1. Chronometric ages and the history of NWA 7034. (A) Summary of NWA 7034 radiometric ages. The horizontal widths of the boxes are defined by the maximum and
minimum ages obtained from a given method plus or minus the associated 2s uncertainties, respectively. U-Th-Sm/He, 40Ar/39Ar, and U-Pu/Xe ages are from this study. U-Pb in
phosphate ages are from the studies ofMcCubbin et al. (6), Yin et al. (8), and Bellucci et al. (9). U-Pb in young zircon ages are from the studies ofMcCubbin et al. (6), Tartèse et al. (7),
andYin et al. (8). U-Pb inold zirconages are fromthe studiesofHumayun et al. (2),McCubbin et al. (6), Tartèse et al. (7), andYin et al. (8). U-Pb inbaddelyite ages are fromTartèse et al. (7).
Sm-Nd data are from Nyquist et al. (5). The whole-rock 40Ar/39Ar age from the study of Lindsay et al. (11) is included with the data from this study. 40Ar/39Ar ages from
feldspars are not shown. (B) Chronology of major events in the history of NWA 7034 inferred from isotopic measurements (see main text for additional details). (i) The source
lithology formed at 4420 ± 70 Ma. (ii) The source lithology was subject to impact events that created ancient impact melt rocks at ~4400 Ma. (iii) After almost 3000 Ma of
quiescence, the terrain experienced several hundred million years of thermal metamorphism from 1500 to 1200 Ma. (iv) Following metamorphism, another ~1000 Ma of qui-
escence prevailed until brecciation at 225 Ma or later. (v) A final impact event after brecciation ejected NWA 7034 from the surface of Mars.
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weighted averages are reported at the 95% confidence interval. Likewise,
all uncertainties on previously reported data are listed at the 2s level.
Detailed descriptions of the analytical methods, data reduction proce-
dures, and statistical treatment of results are provided in the Supple-
mentary Materials.
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RESULTS
40Ar/39Ar chronometry
We conducted a total of 13 whole-rock fragment incremental heating
experiments. Isochron diagrams and age spectra are shown in Figs. 2
and 3, respectively. Complete analytical results are given in the Supple-
mentary Materials, and additional age spectra are shown in fig. S2. The
whole-rock fragments generally yield plateaus over 50% or more of the
total 39Ar released from feldspathic phases within the whole-rock frag-
ments, which yield low Ca/K ratios and degas at low temperatures in
comparison to mafic phases. At low cumulative 39Ar release fractions,
age spectra are variably reset to subplateau ages by one ormore younger
thermal events (Fig. 3). Low-temperature discordance is generally con-
fined to the first 15% of the cumulative gas released, although two
fragments are extensively reset and did not yield plateaus (Fig. 3 and
see also the Supplementary Materials). At high temperatures (high
cumulative 39Ar release fractions), step ages again decrease to sub-
plateau values while the Ca/K ratio increases, before a monotonic
increase in step ages occurs at the end of the heating experiments
(Fig. 3). Such high-temperature discordance is common in meteoritic
40Ar/39Ar age spectra and is attributable to both recoil-implanted 39Ar
from a potassium (K)–rich donor phase (feldspar) into a K-poor recep-
tor phase (pyroxene) [for example, the work ofHuneke and Smith (17)]
and to diffusive loss of 40Ar from pyroxenes due to high-temperature
shock heating (18, 19). In the case of NWA 7034, 39Ar recoil redistribu-
tion appears to be the cause of high-temperature discordance because
matrix pyroxene and feldspar grain sizes (0.1 to 1 mm) (1) are compa-
rable to themean recoil length scale of 39Ar (~0.1 mm) (17) and the rock
is not significantly shocked (4). We excluded discordant low- and high-
temperature extractions from isochron regressions and plateau age cal-
culations discussed below (see the Supplementary Materials for a
description of the statistical approach used to interpret age spectra
and isochron diagrams).

Isochron ages were obtained from 7 of the 13 whole-rock fragments
and range from 1367 ± 44 to 1224 ± 52 Ma (Fig. 2 and Table 1). The
weighted average 40Ar/36Ar ratio of the trapped component inferred
from these seven isochron regressions is 576 ± 208 [mean square
weighted deviation (MSWD) = 8.8; Table 1]. Excess scatter in the iso-
chron y intercepts likely reflects the inclusion of extractions that are de-
ficient in 40Ar or 39Ar due to diffusive or recoil loss, respectively,which can
result in isochron rotation while still providing statistically robust regres-
sions. All age spectra were corrected for trapped 40Ar using the weighted
average trapped component inferred from the isochron regressions. The
resulting plateau ages range from 1391 ± 16 to 1191 ± 32 Ma (Table 1).
Most whole-rock fragments (n = 7 of 13) yielded ages between 1391 ± 16
and 1327 ± 12Ma. The whole-rock 40Ar/39Ar results are generally slightly
younger than U-Pb ages of phosphates and young zircons, which range
from 1574 ± 38 to 1345 ± 47Ma (6–9), and lower intercept U-Pb ages of
old zircons, which range from 1712 ± 170 to 1434 ± 65 Ma (2, 7, 8).

We conducted a total of four feldspar incremental heating
experiments. Representative age spectra are shown in Fig. 3. As
with the whole-rock fragments, feldspar age spectra are variably re-
Cassata et al., Sci. Adv. 2018;4 : eaap8306 23 May 2018
set by one or more thermal events occurring more recently than
1000 Ma, resulting in low-temperature discordance. One aliquot
(SUERC-13) yielded concordant step ages, which define a weighted
average of 1374 ± 7 Ma (MSWD = 7.2; Table 1). One aliquot
(SUERC-14) is significantly disturbed due to diffusive loss, with
maximum step ages of ~1500 Ma. Two aliquots (SUERC-12 and
LLNL-3) yielded progressively older step ages with increasing tem-
perature, with age maxima at >2000 Ma. The feldspar results are
consistent with previous 40Ar/39Ar measurements of plagioclase
and alkali feldspars, which yielded ages between 2250 ± 80 and
1285 ± 8 Ma (11, 12), with one younger outlier at 788 ± 252 Ma
(12). Feldspar ages that exceed 2000 Ma likely indicate that the
thermal events responsible for resetting matrix and clast materials
were insufficiently hot and/or protracted to completely reset larger
feldspar mineral fragments.

U-Th-Sm/He chronometry
Two whole-rock fragments (LLNL-UI-4 and LLNL-UI-5) were ana-
lyzed for He isotopic abundances and then subsequently dissolved for
U, Th, and Sm concentration measurements by ICP-MS. The samples
yield U-Th-Sm/He ages of 135 ± 6 and 113 ± 4 Ma, with U concentra-
tions of 0.73 ± 0.03 and 0.83 ± 0.02 parts permillion (ppm), respectively
(Supplementary Materials). Cartwright et al. (10) measured a similar
concentration of 4He but calculated a slightly older U-Th/He age of
170 Ma, assuming a U concentration of 0.51 ppm as determined by
Agee et al. (20) on a different whole-rock fragment. The individual
U-Th-Sm/He ages do not agree within analytical uncertainties, likely
because of incomplete degassing of 4He from the polymineralic aliquots
during brecciation, ejection, and/or other metamorphic events (dis-
cussed in detail below).

U-Pu/Xe chronometry
Three whole-rock fragments (LLNL-UI-1, LLNL-UI-2, and LLNL-UI-3)
were analyzed for Xe isotopic abundances and then subsequently dis-
solved forU andNd concentrationmeasurements by ICP-MS. The total
abundance of fission Xe in each aliquot exceeds that which could have
been produced by spontaneous fission of 238U since 4400 Ma. For ex-
ample, apparent U-Xe ages are 9111 ± 813, 4541 ± 636, and 11944 ±
1002 Ma (Table 2), based on U concentration measurements of 0.44 ±
0.02, 0.43 ± 0.02, and 0.166 ± 0.002 ppm, respectively (Supplementary
Materials). Collectively, these observations indicate that the source
lithologies formed while 244Pu was live (t1/2 = 81.8 Ma). U-Pu/Xe ages
can be calculated using the Solar System initial ratio of either 244Pu/U or
244Pu/Nd. Assuming a Solar System initial 244Pu/U ratio of 0.0068 ±
0.010 (21), apparent U-Pu/Xe ages are 4274 ± 44, 3963 ± 126, and
4358 ± 47Ma (Table 2). Cartwright et al. (10) measured a slightly lower
U-Pu/Xe age of 3880 +90,−160Ma, assuming aU concentration of 0.51
ppm as determined by Agee et al. (20) on a different whole-rock frag-
ment and chondritic 244Pu/U. Assuming a Solar System initial 244Pu/
Nd ratio of 0.00015 (22), with an arbitrarily assigned 15% uncertain-
ty, and based on Nd concentration measurements of 16.7 ± 0.7, 13.8
± 0.3, and 15.1 ± 0.9 ppm (Supplementary Materials), apparent U-
Pu/Xe ages are 4319 ± 46, 3990 ± 167, and 4301 ± 48Ma, respectively
(Table 2). These ages are comparable to the Sm-Nd age of the source
terrain (4420 ± 70Ma) (5) and old U-Pb ages obtained from baddelyite
and zircon, which range from 4428 ± 50 to 4311 ± 52 Ma (2, 6–8).
Given the geochemical coherence of Pu and Nd (23), the U-Pu/Xe ages
calculated on the basis of the Solar System initial 244Pu/Nd are used
throughout the remainder of the paper for discussion.
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Fig. 2. 40Ar/39Ar isochron diagrams. Data shown in blue are derived from relatively K-rich (felsic) phases. Filled symbols were included in isochron regressions (see the Sup-
plementary Materials for details regarding isochron regressions). Data shown in gray are derived from relatively K-poor phases that appear to be affected by 39Ar recoil and were
excluded from isochron regressions. Error ellipses reflect the uncertainty correlation and ±2s analytical uncertainties. The confidence intervals on the isochron regressions (red
lines) are shown at 2 SE.
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Fig. 3. 40Ar/39Ar age spectra. Age and Ca/K spectra obtained from whole-rock fragments and feldspar separates. 40Ar/39Ar ages are shown without and with martian atmo-
spheric corrections as gray and red boxes, respectively, and are plotted against the primary y axis. Ca/K spectra are shown in blue and are plotted against the secondary y axis. Each
spectrum is plotted against the cumulative release fraction of 39Ar released. Vertical dimensions of the boxes reflect the ±2s analytical uncertainties. The horizontal dashed black
lines and associated gray bands reflect the plateau ages and their associated 2 SE uncertainties, respectively. Horizontal arrows denote steps that were included in plateau ages
(see the Supplementary Materials for details regarding plateau calculations).
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Cosmogenic nuclides
Apparent 3He, 21Ne, 38Ar, 78Kr, and 83Kr CRE ages, calculated on the
basis of the whole-rock composition determined by ICP-MS (Supple-
Cassata et al., Sci. Adv. 2018;4 : eaap8306 23 May 2018
mentary Materials) and element-specific galactic cosmic ray (GCR)
production rates at a nominal shielding of 40 g/cm2 (24), are listed
in Table 3. The cosmogenic nuclides yield weighted average exposure
ages of 2.14 ± 0.25Ma (MSWD=1.96), 4.11 ± 0.49Ma (MSWD=23.4),
4.77 ± 0.54 Ma (MSWD = 2.63), 12.1 ± 1.7 Ma (MSWD = 1.13), and
8.7 ± 1.6 Ma (MSWD = 0.23), respectively. Cartwright et al. (10) ob-
tained apparent 3He, 21Ne, and 38Ar exposure ages of 5.1, 11.4, and
5.4Ma, respectively, at nominal shielding. Although there is agreement
between 38Ar exposure ages for our work and Cartwright et al. (10),
3He and 21Ne exposure ages differ considerably between the two studies.
The source of the discrepancies is unclear but may be related to
variations in the chemical composition used to calculate exposure
ages. The exposure ages reported here represent the average of replicate
analyses (Table 3) and are therefore unlikely to be biased by sample-
to-sample variations in chemical composition. The differences in ap-
parent 3He, 21Ne, 38Ar, 78Kr, and 83Kr exposure ages indicate that (i)
shielding differed considerably from “nominal” (40 g/cm2), (ii) a complex
irradiation history involving pre-ejection irradiation or in-transit
breakup occurred, (iii) some cosmogenic nuclides were lost due to
heating during ejection fromMars, if pre-exposure occurred, or dur-
ing terrestrial atmospheric entry, and/or (iv) solar cosmic ray (SCR)
Table 2. U-Pu/Xe ages. Age uncertainties include uncertainties on [Nd],
[U], [136Xe], Solar System initial Pu/U and Pu/Nd ratios, 136Xe cumulative
yields, branching ratios, and 238U and 244Pu decay constants.
No Pu
 Pu/U* assumed
 Pu/Nd† assumed
Aliquot
 Age ± 2s (Ma)
 Age ± 2s (Ma)
 Age ± 2s (Ma)
LLNL-UI-1
 9111 ± 813
 4274 ± 44
 4319 ± 46
LLNL-UI-2
 4541 ± 636
 3963 ± 126
 3990 ± 167
LLNL-UI-3
 11944 ± 1002
 4358 ± 47
 4301 ± 48
*On the basis of a Solar System initial Pu/U = 0.0068 ± 0.0010 [Hudson et al.
(21)]. †On the basis of a Solar System initial Pu/Nd = 0.00015 [Lugmair
and Marti (22)]. No uncertainty is given in Lugmair and Marti (22). A 15%
uncertainty is assumed here.
Table 1. 40Ar/39Ar results. %39Arfeld is the cumulative percentage of 39Ar released from the feldspathic portion of the age spectrum that is included in the age
calculation. The preferred age for each sample is the plateau age, shown in bold. Data were corrected for cosmogenic Ar using an apparent 38Ar exposure age of 4.77 ±
0.54Ma (see Table 3). Age spectra were corrected for trapped 40Ar using a 40Ar/36Ar ratio of 576 ± 208, based on theweighted average y intercept of seven isochrons. See
the Supplementary Materials for a list of extractions included in isochron regressions and plateau age calculations and for a description of the statistical approach used to
interpret age spectra and isochrons and to calculate weighted averages.
Isochron analysis
 Age spectrum analysis
Aliquot
 Phase
 Age ± 2s (Ma)
 (40Ar/36Ar)trap ± 2s
 MSWD
 Prob.
 %39Arfeld
 Age ± 2s (Ma)
 MSWD
 %39Arfeld
SUERC-1
 WR frag
 Does not meet isochron criteria
 <1300 Ma—did not yield concordant ages
SUERC-2
 WR frag
 1224 ± 52
 542 ± 150
 0.3
 0.57
 52
 1191 ± 32
 0.6
 92
SUERC-3
 WR frag
 1347 ± 24
 869 ± 118
 0.9
 0.42
 52
 1391 ± 16
 0.8
 52
SUERC-4
 WR frag
 No spread on isochron
 1365 ± 16
 0.7
 64
SUERC-5
 WR frag
 1350 ± 38
 267 ± 140
 0.9
 0.46
 61
 1266 ± 14
 1.0
 76
SUERC-6
 WR frag
 1334 ± 70
 310 ± 280
 1.8
 0.13
 59
 1288 ± 32
 1.2
 59
SUERC-7
 WR frag
 Does not meet isochron criteria
 1346 ± 15
 0.9
 89
SUERC-8
 WR frag
 1330 ± 37
 808 ± 230
 1.9
 0.13
 76
 1371 ± 16
 0.7
 76
SUERC-9
 WR frag
 Does not meet isochron criteria
 1345 ± 17
 1.3
 69
SUERC-10
 WR frag
 No spread on isochron
 1383 ± 16
 1.8
 56
SUERC-11
 WR frag
 1367 ± 44
 534 ± 390
 1.0
 0.42
 100
 1367 ± 11
 0.6
 100
LLNL-1
 WR frag
 1337 ± 23
 530 ± 100
 1.3
 0.22
 86
 1327 ± 12
 0.3
 95
LLNL-2
 WR frag
 Does not meet isochron criteria
 <1300 Ma—did not yield concordant ages
Weighted average:
 576 ± 208
 8.8
SUERC-12
 Feldspar
 Does not meet isochron criteria
 >2000 Ma—did not yield concordant ages
SUERC-13
 Feldspar
 Does not meet isochron criteria
 1374 ± 7*
 7.2
 100
SUERC-14
 Feldspar
 Does not meet isochron criteria
 >1400 Ma—did not yield concordant ages
LLNL-3
 Feldspar
 Does not meet isochron criteria
 >2000 Ma—did not yield concordant ages
*The SUERC-13 feldspar age represents the weighted average of all extraction steps and does not satisfy plateau age criteria.
6 of 11

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

http://adva
D

ow
nloaded from

 

contributions are significant. These irradiation scenarios are explored
in more detail below.
 on July 31, 2018
nces.sciencem
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DISCUSSION
Igneous age of the source lithology
The bimodal distribution of U-Pb ages obtained from zircon, bad-
delyite, and phosphates (4400 to 4300 Ma and 1700 to 1300 Ma)
could reflect either multiple source lithologies or selective resetting
associated with secondary thermal events (5). On the basis of a 4420 ±
70 Ma Sm-Nd isochron age obtained from both matrix and clast min-
eral separates, which is indistinguishable from the old population of
zircon and baddelyite ages, Nyquist et al. (5) concluded that the var-
ious lithological components formed contemporaneously and the
source terrain is ancient. The U-Pu/Xe ages obtained from whole-rock
fragments (4319 ± 46, 3990 ± 167, and 4301 ± 48 Ma; Table 2) con-
firm this finding.

Re-Os data indicate that the terrainwas subject to impacts early in its
history, at ~4400 Ma (25), which presumably created the impact melt
clasts within the breccia (4). These impact melt rocks are likely the
host of retentively held ancient atmospheric gases (16) that were in-
corporated in high concentrations via shock implantation (26). Following
emplacement near the martian surface and subsequent impact proces-
sing, the terrain experienced a period of quiescence during which no
metamorphic events are recorded by the U-Pb system in zircon (6). It
is possible that the terrain was buried by volcanic processes or the dep-
osition of sediments or impact ejecta, apparently shielding it from
impact metamorphism and redistribution.

Contact metamorphism between 1500 and 1200 Ma
After almost 3000 Ma of quiescence, the terrain experienced several
hundredmillion years of thermal metamorphism recorded by the K-Ar
andU-Pb systems. 40Ar/39Armeasurementsofwhole-rock fragments yield
plateau ages that range from 1391 ± 16 to 1191 ± 32 Ma (Table 1),
Cassata et al., Sci. Adv. 2018;4 : eaap8306 23 May 2018
slightly younger than the range in U-Pb ages of phosphates and young
zircons (2, 6–9). The age differences exceed measurement uncertainties
and are greater than durations (10’s of Ma or less) required to cool
shock-heated basement terrains following large (100 to 200 km) impact
events that might have occurred at ~1300 Ma (27). These observations
suggest that the K-Ar system in igneous clasts and matrix minerals and
theU-Pb system in phosphateswere reset by a protracted series ofmeta-
morphic events that varied spatially and temporally across the source
terrain. Discordances observed in the Rb-Sr system (5) and partial re-
setting of the Re-Os system (25) are likely due to these metamorphic
events. Themetamorphic conditions were insufficient to completely re-
set theK-Ar system inmillimeter-sized feldsparmineral fragments or to
degas ancient atmospheric noble gases that appear to be hosted in re-
tentive clasts or larger phenocrysts that degas at high laboratory heating
temperatures (16). Selective resetting of chronometers is most easily
accomplished at low temperatures, where differences in diffusivity are
generally more pronounced.

The ancient U-Pu/Xe ages further demonstrate that these secondary
thermal events did not significantly alter the distributions of U or Nd or
cause significant diffusive loss of Xe. It thus appears that the U-Pb sys-
tem in phosphates is more readily reset than the U-Pu/Xe system in
NWA 7034. Closure temperatures for Pb diffusion in 1- to 10-mm do-
mains of gem-quality fluorapatite (Durango,Mexico) range from347 to
414°C (for spherical geometry and a 10°C/Ma cooling rate), with an
activation energy of 231 kJ/mol (28). The applicability of such diffusion
parameters to radiation-damaged chlorapatites like those inNWA7034
is unclear. Data on the diffusion of Xe in silicates are sparse, but gen-
erally indicate a high activation energy for diffusion (>300 kJ/mol)
(15, 29). Such strong temperature dependence for Xe diffusion may
result in a lower diffusivity thanPb if secondary thermal events occurred
at low temperatures. Regardless, the ancient U-Pu/Xe ages suggest that
(i) any subsequent thermal events were insufficiently hot and/or pro-
tracted tomobilize Xe and (ii) aqueous alteration and breccia formation
did not introduce a significant proportion of U-bearing minerals.
Table 3. Apparent CRE ages at nominal shielding. All production rates were calculated using the equations of Eugster and Michel (24) for a nominal shielding
of 40 g/cm2, with P21 modified to account for Na using the Na/Mg production rate at 40 g/cm2 of shielding from Hohenberg et al. (61). All production rates are
based on the whole-rock composition determined by ICP-MS (see the Supplementary Materials), with SiO2 from Agee et al. (20). The weighted average ages,
including production rate uncertainties, are shown in bold.
3He*
 21Ne†
 38Ar‡
 78Kr§
 83Kr¶
Aliquot
 CRE age ± 2s (Ma)
 CRE age ± 2s (Ma)
 CRE age ± 2s (Ma)
 CRE age ± 2s (Ma)
 CRE age ± 2s (Ma)
LLNL-UI-1
 — ± —
 4.05 ± 0.08
 4.63 ± 0.16
 12.26 ± 3.62
 9.12 ± 3.04
LLNL-UI-2
 — ± —
 4.1 ± 0.08
 4.76 ± 0.28
 11.22 ± 1.72
 8.27 ± 1.92
LLNL-UI-3
 — ± —
 4.05 ± 0.06
 5.16 ± 0.3
 13.24 ± 2.08
 9.2 ± 2.36
LLNL-UI-4
 2.46 ± 0.48
 5.18 ± 0.24
 5.09 ± 0.8
 — ± —
 — ± —
LLNL-UI-5
 2.11 ± 0.14
 4.42 ± 0.22
 4.8 ± 0.26
 — ± —
 — ± —
Weighted average||
 2.14 ± 0.13
 4.11 ± 0.26
 4.77 ± 0.25
 12.07 ± 1.24
 8.73 ± 1.34
MSWD
 1.96
 23.43
 2.63
 1.13
 0.23
CRE age w/ PR unc.**
 2.14 ± 0.25
 4.11 ± 0.49
 4.77 ± 0.54
 12.07 ± 1.73
 8.73 ± 1.6
*Calculated using P3 = 7.54 × 10−13 mol/g per million years. †Calculated based on total 21Ne, using P21 = 1.06 × 10−13 mol/g per million years. ‡Calculated
assuming the trapped 38Ar/36Ar ratio is 0.189, using P38 = 4.78 × 10−15 mol/g per million years. §Calculated using P78 = 1.12 × 10−17 mol/g per million
years. ¶Calculated using P83 = 7.36 × 10−17 mol/g per million years. ||See the Supplementary Materials for details on weighted average calculations.
**Systematic uncertainties on cosmogenic nuclide production rates (PR unc.) are assumed to be 10%.
7 of 11

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on July 31, 2018
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

Plume-related magmatism in the NWA 7034 source terrain may
have promoted low-temperaturemetamorphism over a 300-Ma period,
possibly through the intrusion of large dike and sill or plutonic com-
plexes.Martian plume–fed edifices have remained connected to their
magma sources, at least in some instances, for billions of years (30).
Crater density distributions indicate that several martian volcanic
centers were active for hundreds of millions of years at 2000 to
1000 Ma (31), and measurements of nakhlite age variations provide di-
rect evidence for a volcanic center that formed over at least 93 ± 12Ma
during this time period (32).Magmatic intrusions associatedwith the vol-
canic center likely drove hydrothermal systems that produced secondary
alteration phases such as overgrowths observed at phosphate grain
margins (3).Mostwhole-rock fragments (n=7of 13) yielded ages between
1391 ± 16 and 1327 ± 12 Ma (Table 1), suggesting that plume-related ac-
tivity in the NWA 7034 source terrain may have peaked at ~1350 Ma.

Brecciation at 225 Ma or later
Following metamorphism, >1000 Ma of quiescence appears to have
prevailed until another event occurred, as recorded by U-Th-Sm/He
ages of 135 ± 6 and 113 ± 4 Ma. Two end-member explanations for
these ages merit consideration. First, it is possible that the U-Th-Sm/
He system was nearly completely reset by a low-temperature thermal
event such as impact-related brecciation that occurred at ~110Ma. Sec-
ond, it is possible that the U-Th-Sm/He system was partially reset from
1500–1200 Ma to 135–113 Ma during ejection. We consider the latter
scenario unlikely becauseNWA7034 is only shocked to 5 to 15GPa (4),
near the theoretical minimum associated with the acceleration of surface
rocks beyond the planetary escape velocity (33). U-Th/Hemeasurements
of martian meteorites have demonstrated that He loss during ejection
scales with peak shock pressure (34, 35). Nakhlites that have been
shocked to <20 GPa (36) yield U-Th/He ages that overlap 40Ar/39Ar
ages towithin 50% (35). These observations are consistent with theoretical
predictions of postshock temperatures associated with shock pressures
of 5 to 15 GPa, which do not exceed 20°C (36). Because NWA7034 was
shocked at even lower pressures than the nakhlites, it appears unlikely
that significant heating and diffusive loss of 4He occurred during ejec-
tion. We thus suggest that the U-Th-Sm/He ages constrain breccia-
tion to have occurred no earlier than 225Ma, based on an upper limit of
~50% loss of 4He during ejection and the youngest U-Th-Sm/He age
(113 ± 2 Ma).

Additional evidence for brecciation at 225 Ma or later is provided
by 40Ar/39Ar age spectra, which yield subplateau ages during low-
temperature extractions, with age minima at ~400 to 200 Ma (Fig. 3
and Supplementary Materials). Similarly, U-Pb concordia diagrams in-
dicate that one or more disturbances postdate 1500 to 1200 Ma, with
lower intercept ages of 0 ± 100, 209 ± 850, and 392 ± 540 Ma (6–8).
Finally, brecciation at 225 Ma or later provides an explanation for
the K-feldspar 40Ar/39Ar isochron age of 788 ± 252 Ma reported by
Lindsay et al. (12), which presumably reflects detrital material that
was incorporated during brecciation (12).

It is also possible that the NWA 7034 source breccia formed dur-
ing the flank collapse of a large shield volcano, which could provide a
mechanism tomix material that was heated by a volcanic center over
a 300-Ma duration. Because flank collapse is not a priori associated
with heating, if the breccia formed at this time, then the ambient
temperature at the depth from which the rocks were exhumed must
have been sufficiently hot to preclude quantitative retention of 4He
and to cause the minor disturbances to the K-Ar and U-Pb systems
noted above.
Cassata et al., Sci. Adv. 2018;4 : eaap8306 23 May 2018
CRE history
As noted above, there are large discrepancies in apparent CRE ages
calculated using production rates for nominal shielding (Table 3).
NWA 7034 contains 80Kr and 82Kr produced by neutron capture on
79Br and 81Br, respectively (10, 16). The production of measureable
abundances of these neutron capture nuclides requires the NWA
7034 meteoroid to be of sufficient size to slow secondary neutrons to
epithermal or thermal energies. Cartwright et al. (10) suggested that
the NWA 7034 was irradiated in the center of a >50-cm meteoroid,
in which the predicted 22Ne/21Ne ratio based on the model of Leya
and Masarik (37) is consistent with their measurement and shielding
is sufficient to slow secondary neutrons to thermal energies. Irradiation
at depth, however, did not reconcile apparent differences between 3He,
21Ne, and 38Ar exposure ages (10). Because we obtained different 3He
and 21Ne exposure ages than Cartwright et al. (10), we explored solu-
tions to the problem that involved more shielding and contributions
from SCRs. We used depth-dependent GCR production rates (37),
extended to small meteoroids, to model the exposure history. In addi-
tion, SCRproductionwas calculated using themodel of Trappitsch et al.
(38). In both cases, we determined elementary production rates
using the whole-rock composition obtained by ICP-MS (Supple-
mentary Materials). Although the stopping and secondary particle
spectra used to calculate these production rates are based on ordi-
nary chondrites, we did not expect them to vary by more than ap-
proximately 20% because of difference in meteoroid chemistry (39).
We varied meteoroid size and depth of irradiation to find exposure
histories that best reproduced the measured 21Ne/22Ne ratio of ali-
quot LLNL-UI-5 (0.799 ± 0.018; Supplementary Materials) and min-
imized the relative SD between the 3He, 21Ne, and 38Ar exposure ages
(Table 3).

The measured 21Ne/22Ne ratio in NWA 7034 is at the lower limit of
the range observed in stony meteorites (24). Combined GCR and SCR
irradiation, as has been observed in some shergottites and ordinary
chondrites with small recovery masses (39, 40), could explain the dis-
parate results obtained from 3He, 21Ne, 22Ne, and 38Ar.However, NWA
7034 would be required to come from the surface of a sufficiently large
meteoroid such that it is irradiated by SCRs on the surface and receives
secondary neutrons at epithermal or thermal energies from the back
side to produce 80Kr and 82Kr by neutron capture on 79Br and 81Br, re-
spectively. This is problematic becausemost largemeteorites donot pre-
serve their SCR record because of ablation during passage through
Earth’s atmosphere (41). If solely GCR production is considered, then
an irradiation location in either a small meteoroid (<10 cm) or at depth
in a larger meteoroid (>50 cm) can reproduce the measured 21Ne/22Ne
ratio (fig. S3) (10). However, irradiation in a small meteoroid does not
yield concordant CRE ages. For example, a shielding depth of 6.6 to
6.8 cm in ameteoroid with a radius of 7 cm reproduces the 21Ne/22Ne
ratio, but the resulting CRE ages are 2.55 ± 0.26, 4.82 ± 0.48, and 6.58 ±
0.66 Ma for 3He, 21Ne, and 38Ar, respectively, assuming a 10% un-
certainty on production rates. Irradiation at the center of a meteoroid
with radius >120 cm reproduces the 21Ne/22Ne ratio and yields CRE
ages with a relative SD of ~10% or less, comparable to the uncertainties
onGCRproduction rates. For example, the best-fit irradiation history is
at a depth of 280 to 284 cm in a meteoroid with a radius of 300 cm,
which yields 21Ne/22Ne = 0.792 Ma and 3He, 21Ne, and 38Ar exposure
ages of 263 ± 26, 252 ± 25, and 256 ± 26 Ma, respectively. Such an
extended transit duration is inconsistent with that of other martianme-
teorites and is older than the U-Th-Sm/He ages of 135 ± 6 and 113 ±
4Ma but could reflect pre-ejection irradiation after brecciation, followed
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by in-transit irradiation for ~1 to 2Ma.Alternatively, reasonable fits to
the data are obtained at a depth of 114 to 116 cm in ameteoroid with a
radius of 120 cm, which yields 21Ne/22Ne = 0.798 Ma and 3He, 21Ne,
and 38Ar exposure ages of 7.7 ± 0.8, 8.9 ± 0.9, and 9.6 ± 1.0 Ma, respec-
tively. Unfortunately, it is not possible to uniquely solve for the ejection
age, but it is clear that much of the irradiation occurred under significant
shielding (10) and the ejection event likely occurred earlier than the
~5 Ma that would be inferred from the 21Ne and 38Ar exposure ages
at nominal shielding.

Implications for the age of the martian crustal dichotomy
The martian crustal dichotomy, a topographic and geophysical divide
between the heavily cratered southern highlands and smoother
plains of the northern lowlands, is thought to have formed by either
an exogenous (impact-related) or endogenous (mantle-related) origin
(42). Exogenous hypotheses involve a giant impact in either the north-
ern hemisphere (43, 44) or the southern hemisphere (45–48). In
southern hemisphere impact scenarios, the highlands are formed after
the giant impact, due to melt formation and ascent in the impact region
[ahemisphericalmagmaocean; (45)]. Innorthernhemisphere impact sce-
narios, rocks in the southern highlands predate the giant impact and are
covered in up to 25 km of ejecta from the giant impact (49). Empirical
evidence for such a giant impact event might be found in Mars’ elevated
highly siderophile element abundances, which, if caused by exogenous
material delivered after core formation and silicate differentiation, would
likely require an impact with a Ceres-sized planetesimal (50). Endog-
enous hypotheses generally involve degree-1mantle convection (that is,
planetary-scale convection) with upwelling directed beneath either the
southern or the northern hemisphere (49, 51–53). In northern hemi-
sphere scenarios, upwelling thins and erodes the overlying crust, which
is then accreted in the southern hemisphere (53). In southern hemi-
sphere scenarios, upwelling promotes extensive melting and the forma-
tion of a thicker crust above the plume (51, 54). Alternatively,
overturn of an unstable mantle following crystallization of an early
magma ocean may have thickened the crust (55). Estimates for the
age of the dichotomy from geophysical models range from~4500Ma
(52) to several hundred million years after planetary formation (54),
depending on parameters such as mantle viscosity and the inferred
mechanism promoting crustal thickening (for example, mantle
overturn or a layered viscosity structure).

Chronometric data obtained from NWA 7034 place constraints on
near-surface processing and metamorphism in the martian crust over
the past 4420 ± 70 Ma and, therefore, may shed light on the age of the
crustal dichotomy and its formationmechanism. In particular, 40Ar/39Ar,
U-Th-Sm/He, and Sm-Nd measurements indicate that regional terrains
with areal extents of at least hundreds of square kilometers likely re-
mained near the martian surface in the southern hemisphere since
4400 Ma. These observations may limit the timing of putative giant
impacts and crustal growth associated with southern hemisphere up-
welling in degree-1 convection hypotheses, and thus may constrain the
time at which the martian crustal dichotomy formed.

The observation ofU-Pb and 40Ar/39Armetamorphic ages that span
1500 to 1200Ma indicates that heating of the NWA7034 source terrain
varied spatially and temporally over a 300-Ma period. Plume-related
magmatism likely drove crustal heating because the time scales asso-
ciated with impact heating are too short to plausibly explain such an
observation. The areal extents of large volcanic centers associated
with plume-driven magmatism are thousands of square kilometers
(30) and reasonably constrain the maximum size of the source terrain.
Cassata et al., Sci. Adv. 2018;4 : eaap8306 23 May 2018
Ubiquitous resetting of the K-Ar system in matrix minerals and the
U-Pb system in phosphates suggests that crustal heating was not local-
ized on the kilometer scale [for example, because of the intrusion of
small (meter scale) dikes and sills] and, thus, reasonably constrains
the minimum size of the source terrain to be greater than tens of square
kilometers.

Brecciation did not occur until 225Ma or later (as constrained by
U-Th-Sm/He measurements), which indicates that any cratering event
that excavated the source terrain was likely less than 50 to 60 km in size,
the largest events that occurred at that time (56). This in turn sug-
gests that the source terrain remainedwithin ~3 to 4 kmof themartian
surface since formation at 4420 ± 70 Ma, as deeper depths of burial
would preclude excavation. Alternatively, the source terrain may have
been shielded near or above the surface by a comparatively young vol-
canic complex until brought to the surface by a flank collapse. Depths of
burial shallower than a few hundred meters are also likely precluded
because it is statistically implausible that smaller impactors generat-
ing craters up to a few kilometers in diameter would not have hit the
source terrain throughout its 4400-Ma history [that is, the martian sur-
face is saturated by such craters (56)].

Although it is difficult to determine where the NWA 7034 source
terrain was emplaced, the following observations suggest that it was
the southern highlands. First, the matrix and impact melt clast major
element compositions and the bulk-rock infrared absorption spectrum
are consistent with rocks currently found in the southern highlands
(2, 6, 20, 57). Second, ancient terrains in the northern lowlands are,
in many locations, buried in >5 km of overlying sediment and vol-
canic units (58) and are therefore less likely to have been excavated by
impact events at 225Ma or later. Finally, most active volcanism at 1500
to 1200 Ma is focused in the southern highlands and near the Tharsis
and Elysium regions, with the Tharsis volcanoes remaining active
throughout much of martian history (30).

Collectively, data from NWA 7034 and paired stones thus indicate
that cohesive volcanic terrains have likely survived within a few
kilometers of the martian surface, at least in one locality ostensibly in
the southern hemisphere, since >4400 Ma. It follows from this conclu-
sion that if the dichotomy formed because of a giant impact, it is un-
likely to have postdated the formation of the NWA 7034 source
lithology at 4420 ± 70 Ma. Depending on whether the southern or
northern hemisphere was struck, the putative giant impact would have
melted or deeply buried near-surface terrains in the southern hemi-
sphere, respectively. Regarding endogenic hypotheses, the near-surface
history of NWA 7034 suggests that crustal growth associated with a
southern hemisphere upwelling occurred within ~100 to 200 Ma of
planet formation. Longer crustal growth durations spanning 500 to
1000 Ma [for example, select models in Keller and Tackley (51) and Šrá-
mek and Zhong (54)] aremore likely to have buried near-surface terrains.
For example, assuming an intrusive-to-extrusive volcanic ratio of 8.5 to 10
(25) and average crustal thickness in the cratered highlands of 59 km
(59), 5 to 7 km of volcanic deposits are predicted to have formed during
crustal production, consistent with observations of layered volcanic/
sedimentary rocks in Valles Marineris (8 km) (60). The NWA 7034
source terrain is therefore unlikely to have remained within 3 to 4 km
of the martian surface, unless it formed near the end of crustal produc-
tion. Thus, for giant impact and southern hemisphere upwelling scenar-
ios, data fromNWA7034 suggest that formation of themartian crustal
dichotomy predates 4420 ± 70 Ma. Data from NWA 7034 cannot be
used to constrain the age of the dichotomy if crustal growth is asso-
ciated with northern hemisphere upwelling due to degree-1 convection,
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en largely by lithospheric accretion (53).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/5/eaap8306/DC1
Supplementary Materials and Methods
fig. S1. Image of NWA 11522.
fig. S2. 40Ar/39Ar age spectra.
fig. S3. Irradiation modeling of NWA 7034.
data file S1. Complete analytical data set (Excel file).
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