231 research outputs found

    The Inertial Stellar Compass: A New Direction in Spacecraft Attitude Determination

    Get PDF
    The Inertial Stellar Compass (ISC) is a real-time, miniature, low power stellar inertial attitude determination system, composed of a wide field-of-view active pixel star camera and a microelectromechanical system (MEMS) gyro assembly, with associated processing and power electronics. The integrated technologies enable an attitude determination system with an accuracy of 0.1 degree (1 sigma) to be realized at very low power and volume. The attitude knowledge provided by the ISC is applicable to a wide range of space and earth science missions that may include the use of highly maneuverable, stabilized, tumbling, or lost spacecraft. Under the guidance of NASA’s New Millennium ST-6 project, Draper Laboratory is currently developing the Inertial Stellar Compass. Its completion and flight validation will represent a breakthrough in real-time miniature attitude determination sensors. This paper describes system design, development, and validation activities currently underway at Draper

    Positional Homology in Bacterial Genomes

    Get PDF
    In comparative genomic studies, syntenic groups of homologous sequence in the same order have been used as supplementary information that can be used in helping to determine the orthology of the compared sequences. The assumption is that ortholo-gous gene copies are more likely to share the same genome positions and share the same gene neighbors. In this study we have defined positional homologs as those that also have homologous neighboring genes and we investigated the usefulness of this distinction for bacterial comparative genomics. We considered the identification of positionaly homologous gene pairs in bacterial genomes using protein and DNA sequence level alignments and found that the positional homologs had on average relatively lower rates of substitution at the DNA level (synonymous substitutions) than duplicate homologs in different genomic locations, regardless of the level of protein sequence divergence (measured with non-synonymous substitution rate). Since gene order conservation can indicate accuracy of orthology assignments, we also considered the effect of imposing certain alignment quality requirements on the sensitivity and specificity of identification of protein pairs by BLAST and FASTA when neighboring information is not available and in comparisons where gene order is not conserved. We found that the addition of a stringency filter based on the second best hits was an efficient way to remove dubious ortholog identifications in BLAST and FASTA analyses. Gene order conservation and DNA sequence homology are useful to consider in comparative genomic studies as they may indicate different orthology assignments than protein sequence homology alone

    Multidimensional mutual information methods for the analysis of covariation in multiple sequence alignments

    Full text link
    Several methods are available for the detection of covarying positions from a multiple sequence alignment (MSA). If the MSA contains a large number of sequences, information about the proximities between residues derived from covariation maps can be sufficient to predict a protein fold. If the structure is already known, information on the covarying positions can be valuable to understand the protein mechanism. In this study we have sought to determine whether a multivariate extension of traditional mutual information (MI) can be an additional tool to study covariation. The performance of two multidimensional MI (mdMI) methods, designed to remove the effect of ternary/quaternary interdependencies, was tested with a set of 9 MSAs each containing <400 sequences, and was shown to be comparable to that of methods based on maximum entropy/pseudolikelyhood statistical models of protein sequences. However, while all the methods tested detected a similar number of covarying pairs among the residues separated by < 8 {\AA} in the reference X-ray structures, there was on average less than 65% overlap between the top scoring pairs detected by methods that are based on different principles. We have also attempted to identify whether the difference in performance among methods is due to different efficiency in removing covariation originating from chains of structural contacts. We found that the reason why methods that derive partial correlation between the columns of a MSA provide a better recognition of close contacts is not because they remove chaining effects, but because they filter out the correlation between distant residues that originates from general fitness constraints. In contrast we found that true chaining effects are expression of real physical perturbations that propagate inside proteins, and therefore are not removed by the derivation of partial correlation between variables.Comment: 21 pages, 4 figures, 1 table, supporting information containing 2 additional figures is included at the end of the manuscrip

    A new, fast algorithm for detecting protein coevolution using maximum compatible cliques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The MatrixMatchMaker algorithm was recently introduced to detect the similarity between phylogenetic trees and thus the coevolution between proteins. MMM finds the largest common submatrices between pairs of phylogenetic distance matrices, and has numerous advantages over existing methods of coevolution detection. However, these advantages came at the cost of a very long execution time.</p> <p>Results</p> <p>In this paper, we show that the problem of finding the maximum submatrix reduces to a multiple maximum clique subproblem on a graph of protein pairs. This allowed us to develop a new algorithm and program implementation, MMMvII, which achieved more than 600× speedup with comparable accuracy to the original MMM.</p> <p>Conclusions</p> <p>MMMvII will thus allow for more more extensive and intricate analyses of coevolution.</p> <p>Availability</p> <p>An implementation of the MMMvII algorithm is available at: <url>http://www.uhnresearch.ca/labs/tillier/MMMWEBvII/MMMWEBvII.php</url></p

    Elements Discrimination in the Study of Super-Heavy Elements using an Ionization Chamber

    Full text link
    Dedicated ionization chamber was built and installed to measure the energy loss of very heavy nuclei at 2.7 MeV/u produced in fusion reactions in inverse kinematics (beam of 208Pb). After going through the ionization chamber, products of reactions on 12C, 18O targets are implanted in a Si detector. Their identification through their alpha decay chain is ambiguous when their half-life is short. After calibration with Pb and Th nuclei, the ionization chamber signal allowed us to resolve these ambiguities. In the search for rare super-heavy nuclei produced in fusion reactions in inverse or symmetric kinematics, such a chamber will provide direct information on the nuclear charge of each implanted nucleus.Comment: submitted to NIMA, 10 pages+4 figures, Latex, uses elsart.cls and grahpic

    Evolutionary rates vary among rRNA structural elements

    Get PDF
    Understanding patterns of rRNA evolution is critical for a number of fields, including structure prediction and phylogeny. The standard model of RNA evolution is that compensatory mutations in stems make up the bulk of the changes between homologous sequences, while unpaired regions are relatively homogeneous. We show that considerable heterogeneity exists in the relative rates of evolution of different secondary structure categories (stems, loops, bulges, etc.) within the rRNA, and that in eukaryotes, loops actually evolve much faster than stems. Both rates of evolution and abundance of different structural categories vary with distance from functionally important parts of the ribosome such as the tRNA path and the peptidyl transferase center. For example, fast-evolving residues are mainly found at the surface; stems are enriched at the subunit interface, and junctions near the peptidyl transferase center. However, different secondary structure categories evolve at different rates even when these effects are accounted for. The results demonstrate that relative rates and patterns of evolution are lineage specific, suggesting that phylogenetically and structurally specific models will improve evolutionary and structural predictions
    corecore