9,466 research outputs found

    A parallel multistate framework for atomistic non-equilibrium reaction dynamics of solutes in strongly interacting organic solvents

    Get PDF
    We describe a parallel linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM. Forces are obtained using the Hellman-Feynmann relationship, giving continuous gradients, and excellent energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to CCSD(T)-F12 electronic structure theory, we built a 64-state MS-EVB model designed to study the F + CD3CN -> DF + CD2CN reaction in CD3CN solvent. This approach allows us to build a reactive potential energy surface (PES) whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We use our PES to run MD simulations, and examine a range of transient observables which follow in the wake of reaction, including transient spectra of the DF vibrational band, time dependent profiles of vibrationally excited DF in CD3CN solvent, and relaxation rates for energy flow from DF into the solvent, all of which agree well with experimental observations. Immediately following deuterium abstraction, the nascent DF is in a non-equilibrium regime in two different respects: (1) it is highly excited, with ~23 kcal mol-1 localized in the stretch; and (2) not yet Hydrogen bonded to the CD3CN solvent, its microsolvation environment is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational relaxation of the nascent DF results in a spectral blue shift, while relaxation of its microsolvation environment results in a red shift. These two competing effects result in a post-reaction relaxation profile distinct from that observed when DF vibration excitation occurs within an equilibrium microsolvation environment. The parallel software framework presented in this paper should be more broadly applicable to a range of complex reactive systems.Comment: 58 pages and 29 Figure

    Does responsibility affect the public valuation of health care interventions? A relative valuation approach to health care safety

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright © 2012, International Society for Pharmacoeconomics and Outcomes Research (ISPOR).Objective - Health services often spend more on safety interventions than seems cost-effective. This study investigates whether the public value safety-related health care improvements more highly than the same improvements in contexts where the health care system is not responsible. Method - An online survey was conducted to elicit the relative importance placed on preventing harms caused by 1) health care (hospital-acquired infections, drug administration errors, injuries to health care staff), 2) individuals (personal lifestyle choices, sports-related injuries), and 3) nature (genetic disorders). Direct valuations were obtained from members of the public by using a person trade-off or “matching” method. Participants were asked to choose between two preventative interventions of equal cost and equal health benefit per person for the same number of people, but differing in causation. If participants indicated a preference, their strength of preference was measured by using person trade-off. Results - Responses were obtained from 1030 people, reflecting the sociodemographic mix of the UK population. Participants valued interventions preventing hospital-acquired infections (1.31) more highly than genetic disorders (1.0), although drug errors were valued similarly to genetic disorders (1.07), and interventions to prevent injury to health care staff were given less weight than genetic disorders (0.71). Less weight was also given to interventions related to lifestyle (0.65) and sports injuries (0.41). Conclusion - Our results suggest that people do not attach a simple fixed premium to “safety-related” interventions but that preferences depend more subtly on context. The use of the results of such public preference surveys to directly inform policy would therefore be premature.Brunel University

    Remote functionalisation via sodium alkylamidozincate intermediates : access to unusual fluorenone and pyridyl ketone reactivity patterns

    Get PDF
    Treating fluorenone or 2-benzoylpyridine with the sodium zincate [(TMEDA)center dot Na(mu-Bu-t)(mu-TMP)Zn(Bu-t)] in hexane solution, gives efficient Bu-t addition across the respective organic substrate in a highly unusual 1,6-fashion, producing isolable organometallic intermediates which can be quenched and aerobically oxidised to give 3-tert-butyl-9H-fluoren-9-one and 2-benzoyl-5-tert-butylpyridine respectively

    Performance of LPG Storage Tanks on Ground Improved by Stone Columns

    Get PDF
    This paper describes the construction of four large tanks on poor soil conditions consisting of hydraulic fill placed over estuarine silt in Dublin port. The limited differential settlement that could be tolerated by the tanks required that they could not be placed on the existing ground. The optimum solution was found to be ground treatment using vibro-replacement with the formation of stone columns and compaction of the fill. The paper describes the design method used and the control tests. The predicted settlements are compared with settlement readings of the tanks following construction. These show that the chosen solution has performed well and satisfied the design requirements

    Benefits of using liquid sources of potassium fertilizer in northern highbush blueberry

    Get PDF
    Fertigation with N increases growth and production relative to granular N applications in northern highbush blueberry (Vaccinium corymbosum L.), but little information is available on whether there is any benefit to fertigating with other nutrients. The objective of this study was to evaluate the use of K for fertigation. An initial study was done in a greenhouse to identify appropriate combinations of liquid N and K sources for fertigation using potted plants of ‘Duke’ blueberry. The results indicated that the concentration of K in the soil solution increased by 25% with potassium sulfate (K2SO4) and by 39% with potassium thiosulfate (KTS) and, depending on the soil type, was highest when KTS was applied with urea or ammonium sulfate. Leaf K was affected by K as well as N fertilizers and, on average, was greater with than without K in both an optimum and high pH soil and with KTS than with K2SO4 in the latter soil. A second study was conducted to compare fertigation to granular application of K fertilizer using a mature planting of ‘Duke’ blueberry. Treatments included fertigation (once a week from April to August) with water-soluble K2SO4 or KTS, a single application (April) of granular K2SO4, and no K fertilizer. Each K fertilizer was applied at a total rate of 84 kg/ha K2O per year. After 2 years, the treatments have had no effect on yield or fruit quality. However, fertigation with K2SO4 or KTS resulted in lower pH and higher concentrations of K, Ca, Mg, and S in soil solution under the drip emitters than either no K or granular K2SO4, while granular K2SO4 resulted in higher concentration of K than any other treatment at 15 cm from the drip emitter (edge of the wetting front). The fertigated treatments also had greener leaves (based on SPAD meter readings), greater whole-plant leaf K concentrations, and nearly twice as much extractable K in the soil as the non-fertigated treatments. Additional measurements are underway to determine whether K fertigation will have any effect on yield or fruit quality over the long term

    The relationship between Hippocampal asymmetry and working memory processing in combat-related PTSD: a monozygotic twin study

    Get PDF
    BACKGROUND: PTSD is associated with reduction in hippocampal volume and abnormalities in hippocampal function. Hippocampal asymmetry has received less attention, but potentially could indicate lateralised differences in vulnerability to trauma. The P300 event-related potential component reflects the immediate processing of significant environmental stimuli and has generators in several brain regions including the hippocampus. P300 amplitude is generally reduced in people with PTSD. METHODS: Our study examined hippocampal volume asymmetry and the relationship between hippocampal asymmetry and P300 amplitude in male monozygotic twins discordant for Vietnam combat exposure. Lateralised hippocampal volume and P300 data were obtained from 70 male participants, of whom 12 had PTSD. We were able to compare (1) combat veterans with current PTSD; (2) their non-combat-exposed co-twins; (3) combat veterans without current PTSD and (4) their non-combat-exposed co-twins. RESULTS: There were no significant differences between groups in hippocampal asymmetry. There were no group differences in performance of an auditory oddball target detection task or in P300 amplitude. There was a significant positive correlation between P300 amplitude and the magnitude of hippocampal asymmetry in participants with PTSD. CONCLUSIONS: These findings suggest that greater hippocampal asymmetry in PTSD is associated with a need to allocate more attentional resources when processing significant environmental stimuli.Timothy Hall, Cherrie Galletly, C.R. Clark, Melinda Veltmeyer, Linda J. Metzger, Mark W. Gilbertson, Scott P. Orr, Roger K. Pitman and Alexander McFarlan

    Analysis of ultrasonic transducers with fractal architecture

    Get PDF
    Ultrasonic transducers composed of a periodic piezoelectric composite are generally accepted as the design of choice in many applications. Their architecture is normally very regular and this is due to manufacturing constraints rather than performance optimisation. Many of these manufacturing restrictions no longer hold due to new production methods such as computer controlled, laser cutting, and so there is now freedom to investigate new types of geometry. In this paper, the plane wave expansion model is utilised to investigate the behaviour of a transducer with a self-similar architecture. The Cantor set is utilised to design a 2-2 conguration, and a 1-3 conguration is investigated with a Sierpinski Carpet geometry

    Monotonicity of Fitness Landscapes and Mutation Rate Control

    Get PDF
    A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher's work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms

    Continuous gravity measurementsr evealal ow-density lava lake at Kılauea Volcano, Hawai‘i

    Get PDF
    On 5 March 2011, the lava lake within the summit eruptive vent at KÄ«lauea Volcano, Hawai‘i, began to drain as magma withdrew to feed a dike intrusion and fissure eruption on the volcano’s east rift zone. The draining was monitored by a variety of continuous geological and geophysical measurements, including deformation, thermal and visual imagery, and gravity. Over the first ~14 hours of the draining, the ground near the eruptive vent subsided by about 0.15 m, gravity dropped by more than 100 ÎŒGal, and the lava lake retreated by over 120 m. We used GPS data to correct the gravity signal for the effects of subsurface mass loss and vertical deformation in order to isolate the change in gravity due to draining of the lava lake alone. Using a model of the eruptive vent geometry based on visual observations and the lava level over time determined from thermal camera data, we calculated the best fit lava density to the observed gravity decrease—to our knowledge, the first geophysical determination of the density of a lava lake anywhere in the world. Our result, 950 ± 300 kg m-3, suggests a lava density less than that of water and indicates that KÄ«lauea’s lava lake is gas-rich, which can explain why rockfalls that impact the lake trigger small explosions. Knowledge of such a fundamental material property as density is also critical to investigations of lava-lake convection and degassing and can inform calculations of pressure change in the subsurface magma plumbing system

    Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos

    Full text link
    We propose a general strategy for determining the minimal finite amplitude isturbance to trigger transition to turbulence in shear flows. This involves constructing a variational problem that searches over all disturbances of fixed initial amplitude, which respect the boundary conditions, incompressibility and the Navier--Stokes equations, to maximise a chosen functional over an asymptotically long time period. The functional must be selected such that it identifies turbulent velocity fields by taking significantly enhanced values compared to those for laminar fields. We illustrate this approach using the ratio of the final to initial perturbation kinetic energies (energy growth) as the functional and the energy norm to measure amplitudes in the context of pipe flow. Our results indicate that the variational problem yields a smooth converged solution providing the amplitude is below the threshold amplitude for transition. This optimal is the nonlinear analogue of the well-studied (linear) transient growth optimal. At and above this threshold, the optimising search naturally seeks out disturbances that trigger turbulence by the end of the period, and convergence is then practically impossible. The first disturbance found to trigger turbulence as the amplitude is increased identifies the `minimal seed' for the given geometry and forcing (Reynolds number). We conjecture that it may be possible to select a functional such that the converged optimal below threshold smoothly converges to the minimal seed at threshold. This seems at least approximately true for our choice of energy growth functional and the pipe flow geometry chosen here.Comment: 27 pages, 19 figures, submitted to JF
    • 

    corecore