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Abstract

Ultrasonic transducers composed of a periodic piezoelectric composite are gen-

erally accepted as the design of choice in many applications. Their architecture

is normally very regular and this is due to manufacturing constraints rather than

performance optimisation. Many of these manufacturing restrictions no longer hold

due to new production methods such as computer controlled, laser cutting, and

so there is now freedom to investigate new types of geometry. In this paper, the

plane wave expansion model is utilised to investigate the behaviour of a transducer

with a self-similar architecture. The Cantor set is utilised to design a 2-2 configu-

ration, and a 1-3 configuration is investigated with a Sierpinski Carpet geometry.
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Ideally a single longitudinal mode in the thickness direction will drive the trans-

ducer in a piston like fashion. In this paper it was found that by increasing the

fractal generation level, the bandwidth surrounding the main thickness mode will

increase, but there will be a corresponding reduction in the amplitude of the elec-

trical conductance. It is also shown that a shift in the frequency of operation of the

device can be achieved by altering the spatial periodicity of the electrical excitation.

Keywords: FRACTAL, ULTRASONIC TRANSDUCER, PLANE WAVE EXPAN-

SION

1 Introduction

Ultrasonic transducers composed of a periodic piezoelectric composite are generally ac-

cepted as the design of choice in many biomedical [1], sonar [2] and nondestructive testing

applications [3]. This is due to the constituent materials combining to realise better op-

erational characteristics, coupled with the availability of new materials [4, 5]. The most

frequently used designs are manufactured by dicing the ceramic into a series of pillars and

then filling the void with a passive polymer phase [6]. The 1-3 design has connectivity

in only one direction for the ceramic phase but in all three directions for the polymer

phase (see Figure1(a)). For the 2-2 design, the ceramic is cut longitudinally in one di-

rection so that there is connectivity in two directions for both the ceramic and polymer

phases (see Figure1(b)). Ideally a single longitudinal mode in the thickness direction

will drive the transducer in a piston like fashion. Other modes, propagating in other

directions, can interfere with this behaviour and hence it is of interest to theoretically

predict the design criteria, material parameters, etc. that will ensure a large frequency

band gap between the desired thickness mode and these other waves. Note however that

the standard classification of the modes is problematic in this setting as the supporting

medium is heterogeneous, anisotropic, lossy and piezoelectric. As such the descriptions

of the waves in terms of their symmetry, or as Lamb, Rayleigh, bulk waves etc. are only
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pseudo-descriptions and the actual behaviour is more complex.

It is also desirable to maximise the range of frequencies over which the device can

operate; to increase the operational bandwidth. This can aid the generation of coded ex-

citations that are used to improve the spatial resolution and signal to noise ratios [7, 8, 9].

These coded signals are very complex and often require the device to be able to produce

vibrations over a wide range of frequencies. Hence it is of interest to investigate new trans-

ducer designs that can realise improved bandwidths. The use of second harmonic imaging

with ultrasound contrast agents (UCA) also requires a broadband device to generate the

chirp excitation [10]. As transducers operate around a fixed frequency, one transducer

is used to transmit the excitation wave (at the first harmonic frequency) and a separate

transducer, with a centre frequency at the second harmonic of the UCA is used to receive

the reflected signal. This is a typical situation in ultrasound applications, in that set of

devices, each one operating at a different frequency, is required to deal with each new

application. It would therefore be desirable to be able to switch the centre frequency of

a device so that it could be used in a wider variety of settings.

The traditional designs used in ultrasound transducers are very regular and have arisen

due to manufacturing constraints rather than performance optimisation. Many of these

restrictions no longer hold due to new manufacturing processes such as computer con-

trolled, laser cutting machines, and so there is now freedom to investigate new types of

geometry. Devices with irregular and self-similar constructions may prove beneficial how-

ever their use for ultrasonic transducer and array design has not been investigated before.

In this paper, the plane wave expansion model (PWE) [11, 12] is utilised to investigate

the behaviour of a transducer with a fractal architecture. Two designs which exhibit self-

similarity are investigated for their suitability as new transducer array designs. Firstly

the Cantor set, is utilised to design a 2-2 configuration, where each new fractal genera-

tion level will introduce additional ceramic pillars into the transducer (see Figure 3(b)).

Secondly a 1-3 configuration will be investigated with a Sierpinski Carpet geometry (see

Figure 3(a)). The results show an increase in the transmission bandwidth and an ability

to switch the frequency of operation of the device. This work also contributes to the
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(a) (b)

Figure 1: Schematic of a periodic composite transducer where the piezoelectric ceramic

pillars are in black and the polymer filler is in white, (a) 1-3 topology, (b) 2-2 topology

growing body of literature on wave propagation in fractal media [13, 14, 15, 16, 17, 18].

2 Formulation of the method

In the next section the partial differential equations that describe the physical model of

the transducer are shown, along with their associated boundary conditions. A simplified

model of the transducer is presented that does not include a matching or backing layer, nor

any electrical or mechanical loads. The geometry of the transducer is described in terms

of a Fourier series and this, coupled with the Plane Wave Expansion (PWE) method, is

used to find a solution to these equations.

2.1 The Physical Model and Boundary Conditions

The piezoelectric constitutive equations, together with Newton’s second law and Gauss’s

law for dielectric media are [19]

Tij = cijkluk,l + elijφ,l (1)

Di = eikluk,l − εilφ,l (2)

ρ
∂2uj

∂t2
= Tij,i (3)

Di,i = 0, (4)
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where cijkl is the elastic modulus tensor, elij is the piezoelectric stress tensor, and

εil is the permittivity tensor. Equations (1) to (4) constitute 16 equations in the 16

unknowns which are the stresses Tij, the displacements uk, the electric potential φ and

the electrical displacements Di. The method is sufficiently general to cope with a wide

range of boundary conditions but for simplicity the mechanical boundary conditions of

a stress free plate are considered. For the electrical boundary conditions the electrical

Figure 2: The top electrode spacing and an example applied voltage when γ1 =

k1p1/(2π) = 1/2.

potentials at the top and bottom of the transducer are prescribed, along with continuity

of the electrical potential at the front interface. The lower surface is a monolithic plate

with zero electrical potential. The upper plate has a set of electrodes which follow the

periodic spatial pattern of the ceramic pillars. The top surface electrical potential is

therefore described by

φ(x1, x2, t) = V0e
(ωt−γ1x1−γ2x2), (5)

where γi = kipi/(2π) (i=1,2) denotes the electrode spatial wavenumber. This has been

nondimensionalised as the ratio of the periodicity of the device architecture to the spatial

wavelength of the applied voltage. So for example, at fractal generation level % = 3, each

alternate level one ceramic pillar is excited by a voltage that is shifted 180◦ out of phase

corresponds to γ1 = 1/2 (see Figure 2).
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2.2 The Fractal Geometry

The model is configured for periodic 2-2 and 1-3 composites with the main thickness mode

of vibration in the x3 direction (see Figure 1). By using the periodicity of the structure

in the x1 − x2 plane, the material constants, M(x, %), can be expressed as

M(x, %) =







φ, if xεS%

θ, otherwise
(6)

where θ and φ are some physical property pertaining to the polymer and the ceramic

phase respectively, and % is the fractal generation level. This satisfies the periodicity

relationship M(x1 + p1a, x2 + p2b, %) = M(x1, x2, %), ∀ a, b ε Z where p1 is the period of

the geometry in the x1 direction and p2 is the period of the geometry in the x2 direction. A

Fourier series representation for the Sierpinski carpet (1-3 configuration)(see Figure 3(a))

can be written as,

M(x1, x2, %) =
∞

∑

m=−∞

∞
∑

n=−∞

M%
mne

−(2πmx1+2πnx2), (7)

where the set S% is given by

S% =

%
⋃

q=1

8q−1
⋃

i=1

[T q(i, 1), T q(i, 1) + (1/3)q] × [T q(i, 2), T q(i, 2) + (1/3)q], (8)

T 1 = {(−1/6,−1/6)}, (9)

T q =
8

⋃

i=1

{

8q−2
⋃

j=1

γi +

(

T q−1
j +

(

1

2
,
1

2

))

1

3

}

(10)

and γ ={(1/6,1/6),(-1/6,1/6),(-1/2,1/6),(-1/2,-1/6),(-1/2,-1/2),(-1/6,-1/2),(1/6,-1/2),(1/6,-

1/6)}. T q corresponds to the co-ordinates of the bottom left hand corner of each ceramic

pillar and the translation of (1/2, 1/2) is used to facilitate the contraction of each pre-

fractal in the first quadrant. For the Cantor set geometry (2-2 configuration)(see Fig-

ure 3(b)) the Fourier series is expressed as

M(x, %) =
∞

∑

n=−∞

M%
ne−(2πnx), (11)

and S% simplifies to

S% =

%
⋃

q=1

2q−1
⋃

i=1

[T q(i, 1), T q(i, 1) + (1/3)q], (12)
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(a) (b)

Figure 3: Plan view of one period of (a) the Sierpinski carpet transducer design, and (b)

the Cantor set transducer design. (The black squares represent ceramic pillars and the

white material is the polymer. Generation level % = 3)

where

T q =
3

⋃

i=1

{

2q−2
⋃

j=1

γi +

(

T q−1
j +

1

2

)

1

3

}

, (13)

T 1 = {−1/6} and γ = {−1/2, 1/6}. For the Sierpinski carpet design the Fourier coeffi-

cients at fractal generation level % are given by

M%
mn =

(φ − θ)

π2mn
sin

(πm

3q

)

sin
(πn

3q

)

× e(πm(2T q(j,1)+(1/3)q)+πn(2T q(j,2)+(1/3)q)) m,n = ±1,±2, ..., (14)

M%
0n =

(φ − θ)

πn

(

1

3q

)

sin
(πn

3q

)

e(πn(2T q(j,2)+(1/3)q)) n = ±1,±2, ..., (15)

M%
m0 =

(φ − θ)

πm

(

1

3q

)

sin
(πm

3q

)

e(πm(2T q(j,1)+(1/3)q)) m = ±1,±2, ..., (16)

and

M%
00 =

φ − θ

32q
+

7θ

8% − 1
. (17)

For the Cantor set geometry the Fourier coefficients at fractal generation level % are given

by

M%
n =

(φ − θ)

πn
sin

(πn

3q

)

e(πn(2T q(j,1)+(1/3)q)) n = ±1,±2, ..., (18)

and

M%
0 =

φ − θ

3q
+

θ

2% − 1
. (19)

7



The double subscript notation can be simplified by ordering the Fourier coefficients. Define

the ordered set

H = {(−N,−M), (−N,−M + 1), . . . , (−N,M), (−N + 1,−M), . . . , (N,M)} (20)

so that if

Gs =

(

2π

p1

Hs,1,
2π

p2

Hs,2, 0

)

, (21)

then (7) can be rewritten for a finite number of terms (N in direction x1 and M in

direction x2) as

M(x1, x2, %) =

(2N+1)(2M+1)
∑

s=1

M%
s e−Gs.r (22)

where Hs,i is the ith component of element s of H. The dependent variables F (r, t)

propagating within these periodic structures are then approximated as Floquet series

F (r, t, k, ω, %) =

(2N+1)(2M+1)
∑

s=1

F %
s (k, ω)e(ωt−k·r−Gs

·r) (23)

where r = (x1, x2, x3), t is time, ω is the angular frequency and k = (k1, k2, k3) is the

wave vector. Viscoelastic loss is incorporated into the model by the use of a complex wave

vector [12].

2.3 The Plane Wave Expansion Method

Denote the generalized displacement field by u where u = (u1, u2, u3, u4 = φ) and the

generalized stress vectors by ti = (Ti1, Ti2, Ti3, Di). Substituting the expansion (23) into

(1) and (2), and equating coefficients, gives

T p
ij =

(2N+1)(2M+1)
∑

q=1

−(kl + Gq
l )(c

V p,q

ijkl uq
k + eV p,q

lij uq
4) (24)

and

Dp
i =

(2N+1)(2M+1)
∑

q=1

−(kl + Gq
l )(e

V p,q

ikl uq
k − εV p,q

il uq
4) (25)

where the particular Floquet series component is given by
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V p,q =















































p + (2N+1)(2M+1)+1
2

− q, if 1 ≤ p + (2N+1)(2M+1)+1
2

− q ≤ (2N + 1)(2M + 1)

and |Hp,1 − Hq,1| ≤ N |Hp,2 − Hq,2| ≤ M

0, otherwise

(26)

and MV p,q

= 0 if V p,q = 0. In terms of the generalized stress vectors (24) and (25) give

tpi =

(2N+1)(2M+1)
∑

q=1

(kl + Gq
l )A

p,q
il uq (27)

where

Ap,q
il =













































cV p,q

i11l cV p,q

i12l cV p,q

i13l eV p,q

li1

cV p,q

i21l cV p,q

i22l cV p,q

i23l eV p,q

li2

cV p,q

i31l cV p,q

i32l cV p,q

i33l eV p,q

li3

eV p,q

i1l eV p,q

i2l eV p,q

i3l −εV p,q

il













































. (28)

The same analysis can be carried out for equations (3) and (4) to obtain the expression

(ki + Gp
i )t

p
i =

(2N+1)(2M+1)
∑

q=1

ω2Rp,quq, (29)

where

Rp,q =



















ρV p,q

0 0 0

0 ρV p,q

0 0

0 0 ρV p,q

0

0 0 0 0



















.
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Now let Ti =
[

t1i , . . . , t
p
i , . . . , t

(2N+1)(2M+1)
i

]T

, U =
[

u1, . . . , uq, . . . , u(2N+1)(2M+1)
]T

,

Aij =



















A1,1
ij A1,2

ij . . . A
1,(2N+1)(2M+1)
ij

A2,1
ij A2,2

ij . . . A
2,(2N+1)(2M+1)
ij

...
...

. . .
...

A
(2N+1)(2M+1),1
ij A

(2N+1)(2M+1),2
ij . . . A

(2N+1)(2M+1),(2N+1)(2M+1)
ij



















, (30)

and

R =



















R1,1 R1,2 . . . R1,(2N+1)(2M+1)

R2,1 R2,2 . . . R2,(2N+1)(2M+1)

...
...

. . .
...

R(2N+1)(2M+1),1 R(2N+1)(2M+1),2 . . . R(2N+1)(2M+1),(2N+1)(2M+1)



















. (31)

Equations (27) and (29) can then be written compactly as

Ti = AijΓjU (32)

and

ω2RU = Γi (Ti) (33)

where

Γi =



















(ki + G1
i )I4 0 . . . 0

0 (ki + G2
i )I4 . . . 0

...
...

. . .
...

0 0 . . . (ki + G
(2N+1)(2M+1)
i )I4



















. (34)

Equations (33) and (34) can be combined to give the generalised eigenvalue problem





ω2R − B 0

−C2 I









U

T3



 = k3





C1 I

D 0









U

T3



 (35)

in the 8(2N + 1)(2M + 1) eigenvalues k
(r)
3 and corresponding eigenvectors





U

T3





(r)

where B =
∑

i,j=1,2 ΓiAijΓj, C1 =
∑

i=1,2 ΓiAi3, C2 =
∑

j=1,2 A3jΓj and D = A33. Solving

equation (35) and introducing the relative amplitudes A(r) gives
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u(r, t)

tq3(r, t)



 = e(ωt−k1x1−k2x2)

(2N+1)(2M+1)
∑

q=1

e−Gq
·r







8(2N+1)(2M+1)
∑

r=1

A(r)e−k
(r)
3 x3





uq

tq3





(r)





.

(36)

Energy distribution within the transducer can be used to clarify particular types of

modes in conjunction with examining profiles of the displacements, stresses and electric

potential. The energy distribution in the device can be examined using the Poynting

vector, defined as

Pj = −Tijui,t + φDj,t. (37)

Substituting equations (1) and (2) into equation (37) gives

Pj = −ω(cijkluk,l + elijφ,l)ui + ωφ(ejkluk,l − εjlφ,l). (38)

2.4 Applying the Boundary Conditions and the Derivation of

the Electrical Operating Characteristics

Applying the mechanical boundary condition of a stress free plate gives, from equation

(36)

0 =

8(2N+1)(2M+1)
∑

r=1

A(r)e−k
(r)
3 h(T q

3i)
(r), q = 1, . . . , (2N + 1)(2M + 1) (39)

at the top surface x3 = h and

0 =

8(2N+1)(2M+1)
∑

r=1

A(r)(T q
3i)

(r), q = 1, . . . , (2N + 1)(2M + 1) (40)

at the lower surface x3 = 0. Setting the electrical potential given by equation (5) at

x3 = h gives, from equation (36)

8(2N+1)(2M+1)
∑

r=1

A(r)φq,(r)e−k
(r)
3 h = V0 sinc

(

(k1 + Gq
1)

p1

2

)

(41)

× sinc
(

(k2 + Gq
2)

p2

2

)

, q = 1, . . . (2N + 1)(2M + 1)
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and at x3 = 0 (with zero electrical potential)

8(2N+1)(2M+1)
∑

r=1

A(r)φq,(r) = 0. (42)

Equations (39), (40), (41) and (42) constitute 8(2N +1)(2M +1) equations in the 8(2N +

1)(2M + 1) unknowns A(r). Hence this system of linear equations can be solved for

the coefficients A(r); these are needed below in equation (43) to calculate the electrical

admittance and in equation (36) to calculate the displacements, stresses etc. The electrical

operating characteristics of the device are then used to examine its resonant behaviour.

The admittance (Y ) expresses the ease with which an alternating current flows through

the transducer and the resonant modes are signified by maxima in the real part of the

admittance (the conductance Y ). Using continuity of the electrical potential at the front

interface it can be shown that [11]

Y (k1, k2, ω) = ω

(2N+1)(2M+1)
∑

q=1





8(2N+1)(2M+1)
∑

r=1

A(r)
(

D
q,(r)
3 − ε0|κ|φ

q,(r)
)

e−jk
(r)
3 h





×p1 sinc
(

(k1 + Gq
1)

p1

2

)

p2 sinc
(

(k2 + Gq
2)

p2

2

)

(43)

where κ =
√

(k1 + Gq
1)

2 + (k2 + Gq
2)

2.

3 Theoretical Model Results

In section 3.2 the admittance (Y ) and electrical impedance (ZT = 1/Y ) characteristics

of a Cantor set composite transducer, with a standard hardset passive phase and PZT5H

ceramic (see Tables 1 and 2 for material properties ) are investigated. The effects of

the fractal generation level will be discussed and a modal analysis will be performed to

categorise any additional modes that arise due to the fractal geometry. In section 3.3

the electrical impedance and admittance characteristics of a Sierpinski carpet composite

transducer using these materials is similarly investigated. The lateral spatial periodicity

is set as p1 = p2 = 1 mm and the thickness of the device is also h = 1 mm.
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Parameter Symbol/Units Value

Shear modulus (real part) G′(kg m−1s−2) 1.57 × 109

Young’s modulus (real part) Y ′(kg m−1s−2) 4.28 × 109

Shear Velocity cG(m s−1) 1.17 × 103

Longitudinal Velocity cY (m s−1) 2.51 × 103

Density ρ ( kg m−3) 1.15 × 103

Dielectric constant ε(−) 4

Frequency of measurement fI (Hz) 5.00 × 105

tan δ frequency maximum fmax(Hz) 3.15 × 105

G Attenuation Coefficient α0
G(Np/m) 41b

Y Attenuation Coefficient α0
Y (Np/m) 16b

Table 1: Physical properties of the polymer phase HY1300/CY1301 Hardset [20].

- Constant Units Value

elastic constant c11 Nm−2 12.72 × 1010

elastic constant c12 Nm−2 8.02 × 1010

elastic constant c13 Nm−2 8.47 × 1010

elastic constant c33 Nm−2 11.74 × 1010

dielectric constant ε33 - 1.70 × 103

dielectric constant ε11 - 1.47 × 103

Loss Tangent tan δ - 1/65

density ρb kg m−3 7.50 × 103

Piezoelectric stress coefficient e33 C m−2 23.30

Piezoelectric stress coefficient e31 C m−2 −6.50

Table 2: Physical properties of the ceramic phase PZT5H [21].

3.1 Numerical Implementation

The model has been implemented in a FORTRAN code that calls NAG [22] subroutines

to numerically solve the large matrix equations. In particular they are used to solve

13



the system of linear equations (39), (40), (41) and (42) for the mode amplitudes A(r).

The matrix of coefficients in these equations (X say) has dimensions 8(2N + 1)(2M +

1) × 8(2N + 1)(2M + 1) and is fully populated, where N and M are the number of

Fourier coefficients used to approximate the device architecture in each lateral direction.

Unfortunately the matrix X is ill-conditioned [23]. To help obviate this problem the

matrix entries are balanced by scaling the parameters of the model (see Table 3). Each

of the parameters is made O(1) by a judicious choice of the scalings α, β, γ and ϕ so that

five equations in four unknowns must be satisfied. This is done by scaling the thickness

h by specifying β, scaling the density ρ by specifying α, scaling the piezoelectric stress

tensor eijk by specifying ϕ, scaling the elasticity tensor cijkl by specifying γ and this

results in an appropriate scaling for the permittivity tensor εij. The exponential terms

Parameter Units Dimensions Scaling

cijkl Nm−2 ML−1T−2 αβ−1γ−2

εij Fm−1 C2M−1T 2L−3 φ2α−1γ2β−3

eijk Cm−2 CL−2 φβ−2

ρ kgm−1 ML−1 αβ−1

h m L β

Table 3: Dimensions and scaling parameters for the material properties.

that arise when calculating the boundary conditions at x3 = h also adversely affect the

conditioning of the matrix X. To alleviate this problem the rows of X that arise from

these boundary conditions are multiplied by a scale factor given by emaxr(k′′(r)
3 )h, where

k′′(r)
3 is the imaginary part of the wavenumber k

(r)
3 . The remaining ill-conditioning is then

dealt with by the use of Tikhonov regularisation [24]. This involves the introduction of

a small parameter (µ) that shifts the eigenvalues of the matrix X away from zero along

the positive real axis. In order to do this the matrix X is multiplied by its complex

conjugate X∗ so that the matrix is real and symmetric and its eigenvalues become real

and non-negative. A small real number µ is then added to the diagonal terms so that

the eigenvalues are translated in the positive direction. So the system of equations that
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is ultimately solved is

(X∗X + µI)A(r) = X∗Q, (44)

where the vector Q corresponds to the right hand sides of the system of equations (39),

(40), (41) and (42). As the number of Fourier coefficients increases the implementation

time of the model also increases. In the following results, fifteen Fourier coefficients

are used to approximate the geometry of the transducer. For the Cantor Set design the

matrix dimensions are then roughly 400×400 and for the Sierpinski Carpet the dimensions

are approximately 20000× 20000. The results shown below were produced on a standard

desktop computer; the longest computation was for Figure 19 and this took approximately

three hours of CPU time. As the fractal generation level increases the number of Fourier

coefficients required to represent the fine structure of such a device grows exponentially

and therefore so does the computation time. However, from practical manufacturing

considerations, the number of generation levels will be limited to three or four, and so the

methodology presented here is appropriate.

3.2 The Cantor Set Transducer
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Figure 4: The absolute value of (a) the electrical impedance ZT (normalised) and (b) the

conductance Y (normalised) plotted against the nondimensionalised electrode wavenum-

ber k1p1/2π and the driving frequency f (MHz) with fractal generation level % = 1 for

the Cantor set transducer.

By examining the impedance profile in Figure 4 (a), the mechanical resonant fre-
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quency (fm) is identified as the central ridge at around 2 MHz and the electrical resonant

frequency (fe) as the minima at around 1.5 MHz. The electrical resonant frequency cor-

responds to the thickness mode; a piston-like motion of the device in the x3 direction. To

gauge the effect of the fractal geometry on the behaviour of the device a comparison with a

one dimensional effective medium model (Linear Systems Model (LSM) [25])is conducted.

Fractal generation level % = 1 corresponds to the regular design shown in Figure 1(b).

Comparison to the LSM model in Figure 5 shows that there is good agreement between

both methods in the location of the modes (fm = 1.9 MHz) however the PWE model

predicts that the magnitude of the thickness mode response will be slightly smaller. As

the top electrode spacing varies from γ1 = 0 (that is a single, infinitely long top electrode)

to γ1 = 1/2 (see Figure 2), there is very little change in the profile (see Figure 4).
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Figure 5: Absolute value of the electrical impedance ZT (kΩ) against frequency f (Hertz)

×106 using the LSM method (dashed line) and the fractal PWE method (solid line) with

fractal generation level % = 1 for the Cantor set transducer (γ1 ≈ 0).
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Figure 6: The real part of the in-plane displacement in the x3-x1 plane x2 = 0 ( fe = 1.46

MHz and % = 1). Plot (a) is at time t0 and (b) is at time t0 plus half the period (the

displacements have been scaled to accentuate the motion, the dark area is the ceramic

and the lighter area is the polymer). The electrical stimulus from the top electrode has a

wavenumber of k1 = 157 m−1 which corresponds to essentially a single electrode covering

all the ceramic pillars.

By investigating the displacement in the x3-x1 plane x2 = 0 in Figure 6 it can be seen

that at this frequency the transducer is moving in a piston-like fashion with very little

motion in the x1 direction, and the ceramic pillars move out of phase with the polymer.

This is the thickness mode since the mode is symmetric, u1 is negligible compared to u3

and the amplitude of the displacement is large. By examining the Poynting vector in the

same plane in Figure 7 it can be seen that the energy is distributed across the transducer

in the x3 direction but mainly in the ceramic phase.
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Figure 7: The real part of the Poynting in the x3-x1 plane x2 = 0 (k1 = 157 m−1, fe = 1.46

MHz and % = 1). Plot (a) is at time t0 and (b) is at time t0 plus half the period (the

Poynting vector has been scaled to accentuate the motion, the dark area is the ceramic

and the lighter area is the polymer).
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Figure 8: The absolute value of (a) the electrical impedance ZT and (b) the conductance

Y plotted against the nondimensionalised electrode wavenumber k1p1/2π and the driving

frequency f (MHz) for fractal generation level % = 2 for the Cantor set transducer.

Figure 8 shows the absolute value of the electrical impedance and conductance of the

transducer as a function of the driving frequency and the nondimensionalised wavenumber

k1p1/2π for fractal generation level two. It is found that as the spatial wavelength of the

electrical excitation decreases (as k1p1/2π increases), an additional mode is introduced.

When k1p1/2π is small the top electrode acts as a single electrode, essentially treating

the device as a homogeneous medium. As k1p1/2π increases, the heterogeneities in the
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medium start to affect its behaviour.
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Figure 9: Absolute value of the electrical impedance ZT (kΩ) against frequency f (Hertz)

×106 using the LSM method (dashed line) and the fractal PWE method (solid line) for

fractal generation level % = 2 (γ1 = 1/2).

Comparison with the LSM model in Figure 9 suggests that the mechanical resonant

frequency (of the homogeneous device) is the second peak at 2 MHz.
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Figure 10: The real part of the in-plane displacement in the x3-x1 plane x2 = 0 (k1 = 2983

m−1, fe = 1.08 MHz and % = 2). Plot (a) is at time t0 and (b) is at time t0 plus half

the period (the displacements have been scaled to accentuate the motion). Here the

wavenumber for the electrical excitation corresponds to each alternate generation level 1

ceramic pillar being phase opposed (γ1 = 1/2 see Figure 2).

By investigating the real part of the in-plane displacement in the x3-x1 plane x2 = 0

in Figure 10 for the lower frequency mode (fe = 1.08 MHz) it is found that the alternate

level % = 1 pillars are out of phase and the level % = 2 pillars, which arise from the new
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fractal generation level, are in phase with their neighbouring level % = 1 pillar. The spatial

periodicity in the electrical excitation (k1 = 2983 m−1) corresponds to the generation level

% = 1 pillars being spaced at half the wavelength of this excitation. This accounts for

the adjacent level % = 1 pillars being phase opposed. The motion at the top and bottom

of the transducer is predominantly in the x3 direction, with only lateral motion in the

middle of the transducer. As the large pillars become tall and thin, the smaller pillars are

squashed inwards and as they become short, the smaller pillars are pushed outwards.
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Figure 11: The real part of the in-plane displacement in the x3-x1 plane x2 = 0 (k1 = 2983

m−1, γ1 = 1/2, fe = 1.72 MHz and % = 2). Plot (a) is at time t0 and (b) is at time t0

plus half the period (the displacements have been scaled to accentuate the motion).

Modal analysis of the higher frequency mode (the second minimum in Figure 9 at

fe = 1.72 MHz) also shows a motion that is mainly in the vertical direction. In contrast

to the previous case, as the large pillars become tall, the smaller pillars are now pushed

outwards. Examination of the Poynting vector indicates that the energy is mainly at the

faces of the transducer, particularly at the top face. As x1 increases, the damping will

increase since the imaginary part of the wavenumber k1 is positive. Both of these modes

show characteristics of a thickness mode and the presence of two thickness modes has

arisen due to the inclusion of the second generation level of ceramic pillars.

This device can therefore transmit over a wider range of frequencies than the regular

design. This has practical implications as this will allow electrical excitations composed of

a range of frequencies to be used. These broadband coded excitations (such as chirps) lead

to improved image resolution in medical applications. The disadvantage is that the peak
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conductance has been reduced and so the efficiency of the device (its ability to convert

the electrical energy into mechanical energy in the thickness direction) has been reduced.

This is due to the unwanted lateral motion of the pillars that has been introduced, which

transmits mechanical energy in the lateral directions. Unlike the regular design, the main

peak in the conductance has been shifted to a lower frequency (from around 1.5 MHz to

1 MHz). So this device also has the ability to switch its main frequency of operation by

simply adjusting the electrical input (that is the spatial periodicity of the top electrode

excitation). Thus a single device of this type could replace two single frequency devices

of standard design. In practical applications a particular transmission frequency is often

required because of the resonant behaviour of the system being interrogated.
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Figure 12: The absolute value of (a) the electrical impedance ZT and (b) the conductance

Y plotted against the nondimensionalised wavenumber k1p1/2π and the driving frequency

f (MHz) for % = 3 for the Cantor set transducer.

The electrical impedance and conductance of a transducer with fractal generation

level % = 3 is plotted as a function of frequency and the nondimensionalised wavenumber

k1p1/2π in Figure 12. By introducing another fractal generation level, there are now

4 modes present in each plot. There are two additional lower frequency modes within

the impedance plot and as the wavelength of the electrical excitation decreases (k1p1/2π

increases) the main lobe around 2 MHz is damped out.

21



0.5 1 1.5 2 2.5 3

20

30

40

10

PSfrag replacements

f

ZT

Figure 13: Absolute value of the electrical impedance ZT (kΩ) against frequency f (Hertz)

×106 using the LSM method (dashed line) and the fractal PWE method (solid line) with

% = 3 (γ1 ≈ 0).

Comparison with the LSM method when γ1 = k1p1/2π is small shows that there is

good agreement away from the resonant regions where there are now two modes present

in the PWE method. By analysing the displacements of the first mode in Figure 12 (b)

(γ1 = k1p1/2π = 0.5 and f = 0.63 MHz), it is found that the mode is antisymmetric.

The pillars are stretched and squashed at opposite faces of the transducer and the energy

is predominantly at the faces of the transducer. This behaviour is symptomatic of an

anti-symmetrical Lamb mode, although it has to be borne in mind that this is a pseudo-

description, given that the medium is heterogeneous, piezoelectric, anisotropic and lossy.

Displacement plots at the second minima in Figure 12(b) show that the large pillars are

out of phase from the small pillars and the mode is symmetric. As the large pillars become

small the additional pillars are shifted apart in the middle and squashed inwards at the

faces of the transducer. The Poynting vector shows that the energy is distributed evenly

in the thickness direction of the transducer. Since the displacement is mainly in the x3

direction, the mode is classified as a thickness mode. The displacement of the mode

occurring around 1.5 MHz in Figure 12(b) is mainly vertical, although the pillars are

slightly stretched and squashed at opposite faces. This mode is anti-symmetric, the level

% = 1, 2 and 3 neighbouring pillars move as one, and each alternating set of these is 180o

out of phase. Once again, the energy is mainly at the faces, with a large part of the energy

distributed within the higher generation level pillars. By investigating the displacements
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of the mode occurring around 2.43 MHz it is found that the overall motion shows the

ceramic phase being stretched and squashed, at alternating faces of the transducer (i.e.

in a flexural motion). Here the largest pillars are out of phase from the two higher fractal

generation level pillars. The energy is distributed along the top face of the transducer

and the motion is being driven by the flexural response of the large ceramic pillar and so

this mode can be categorised as an intra-pillar mode.

So for larger values of the electrode spacing wavenumber (γ1) the lateral modes in-

terfere with the thickness mode. This mix of flexural modes, guided waves and piston

like behaviour will reduce the efficiency of the device. For these electrode spacings this

is therefore not a good design. The use of high aspect ratio ceramic pillars (that is long

and thin) would help to alleviate this problem. For small values of γ1 however the device

does give rise to a broad conductance distribution, although the amplitude is low. As the

fractal generation level increases, the volume fraction of piezoelectric material increases,

and this leads to a larger amplitude in the conductance plots.
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Figure 14: The absolute value of (a) the electrical impedance ZT and (b) the conductance

Y plotted against the nondimensionalised wavenumber k1p1/2π and the driving frequency

f (MHz) for % = 4 for the Cantor set transducer.

The electrical impedance and conductance of a transducer with four fractal genera-

tion levels is plotted as a function of frequency and the nondimensionalised wavenumber

k1p1/2π in Figure 14. By introducing another fractal generation level, there are now 5

modes present in each diagram and as k1p1/2π increases the main lobe around 2 MHz
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is damped. The results were produced using fifteen Fourier coefficients, which does not

fully resolve the generation level four pillars, and is essentially a generation level three

simulation with a stiffer polymer phase. These five modes are a complicated mix of flex-

ural, symmetric and guided waves and so the efficiency of this device is far from optimal.

The thickness of the device is identical to its lateral periodicity and so the resonant fre-

quency of the (desired) thickness mode harmonic is of a similar magnitude to some of

the (unwanted) lateral modes. A thicker design,with high aspect ratio pillars, would help

to separate these frequencies and may lead to an improved bandwidth for the thickness

mode.
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Figure 15: Absolute value of the Electrical impedance ZT (kΩ) against frequency f (MHz)

using the LSM method (dashed line) and the fractal PWE method (solid line) with % = 4

(γ1 = 1/2).

Comparison to the LSM method shows that both methods predict a mode around 2

MHz. The PWE method predicts up to 5 modes for % = 4 and the profiles of the modes

are less smooth than before.
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Figure 16: Absolute value of the Electrical conductance Y (kΩ) against frequency f

(Hertz) ×106 using the fractal PWE method. The small dashed, large dashed and full

lines represent fractal generation % = 1, % = 2, and % = 3 respectively of the Cantor set

transducer.

The electrical conductance of the transducer at various fractal generation levels is

plotted as a function of frequency in Figure 16. When using only one fractal generation

level, the amplitude of the conductance is found to be 0.6 and the 6 dB percentage

bandwidth is 6%. By introducing another fractal generation level (% = 2), the amplitude

decreases to 0.44 but the bandwidth has increased to 7%. Increasing the fractal generation

level to 3 gives rise to a double lobed thickness mode with amplitude 0.17 and bandwidth

65%. The inclusion of extra pillars has increased the bandwidth but as a result the

amplitude of the thickness mode has been compromised. These fractal designs have the

potential to improve the bandwidth of the transducer as they can introduce additional

thickness mode resonances. However, this will require a design with high aspect ratio

ceramic pillars, that separates the frequencies of the (desired) thickness modes from the

(unwanted) lateral modes.

3.3 The Sierpinski Carpet Transducer

In this section the Sierpinksi carpet (1-3 configuration) device shown in Figure 3(a) is

investigated.
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Figure 17: The absolute value of (a) the electrical impedance ZT and (b) the conductance

Y plotted against the nondimensionalised electrode spacing k1p1/2π and the driving fre-

quency f (MHz) with fractal generation level % = 1 for the Sierpinski Carpet transducer.

As above, the generation level one device is examined first as this is representative

of the designs currently in use. By examining the displacements of the modes shown in

the impedance profile in Figure 17 (a), the mechanical resonant frequency (fm) can be

identified as the central ridge at around 1.8 MHz and the electrical resonant frequency (fe)

as the minima at around 1.4 MHz. As the electrode spacing decreases, that is, as k1p1/2π

increases, the main lobes in each plot are attenuated but remain at a fixed frequency.

Figure 18: Surface displacement for fractal generation level % = 1 for the Sierpinski Carpet

transducer.
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Figure 19: The absolute value of (a) the electrical impedance ZT and (b) the conductance

Y plotted against the nondimensionalised wavenumber k1p1/2π and the driving frequency

f (MHz) for fractal generation level % = 2 for the Sierpinski Carpet transducer.

Figure 19 shows the absolute value of the electrical impedance and conductance of the

transducer as a function of the driving frequency and the nondimensionalised wavenumber

γ1 = k1p1/2π for fractal generation level two. Once again it is found that by introducing

an extra fractal generation level an additional mode is introduced. Examination of the

displacement profiles for this mode show it to be an unwanted lateral mode. However, as

can be seen in Figure 19(b), as the electrode wavenumber increases the bandwidth of the

thickness mode also increases. Comparison with the regular design in Figure 17(b) shows

that an improved bandwidth has been achieved with just two generation levels.
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Figure 20: Surface displacement for fractal generation level % = 1 for the Sierpinski Carpet

transducer.

4 Conclusions

In general, ultrasonic transducers composed of a periodic piezoelectric composite realise

better operational characteristics than single phase designs. The two phase material has

reduced mechanical impedance, that better matches the impedance of the mechanical

load, and this aids the transfer of mechanical energy into the load material. The most

frequently used designs are manufactured by dicing the ceramic into a series of pillars

and then filling the void with a passive polymer phase. The architecture of these devices

is very regular and has arisen due to manufacturing constraints rather than performance

optimisation. However, many of these restrictions no longer hold due to new manufac-

turing processes such as computer controlled, laser cutting machines, and so there is now

freedom to investigate new types of geometry. Hence, in this paper, devices with self-

similar constructions over a small number of generation levels have been investigated. It

is shown that the plane wave expansion model (PWE) can be utilised to investigate the

behaviour of these new composite piezoelectric transducers. Of course, from a manufac-

turing perspective, it will only be possible to build fractal devices over a limited number of

generation levels. The effects of introducing up to four fractal generation levels have been
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investigated for a Cantor set geometry transducer and a modal analysis was performed

to help explain its characteristics. The results highlight the potential of these designs to

broaden the bandwidth of these transducers. Recently, it has been shown that the use

of broadband coded excitations such as chirps, has tremendous potential in improving

medical image resolution using ultrasound transducers. However this technology requires

new transducer designs capable of producing these broadband signals. Such broadband

devices would also be of use in second harmonic imaging techniques whereby the received

signal is analysed at twice the frequency of the transmitted wave. It was shown in this

paper that by increasing the fractal generation level, the bandwidth surrounding the main

thickness mode will increase, albeit with a corresponding reduction in the displacement

amplitude. The PWE method was also used to investigate the effects of using a transducer

with a Sierpinski Carpet geometry. It was found in both fractal architectures (1-3 and

2-2 configurations) that by introducing more fractal generation levels, additional modes

will occur which may be able to broaden the operational bandwidth. In addition it was

shown that by varying the spatial periodicity of the electrical excitation a shift in the

main operating frequency of these devices could be achieved. These preliminary results

provide an indication of the potential of these devices. The implementation of the model

is sufficiently fast that it could be used to drive a design optimisation routine. The results

presented here would no doubt improve if high aspect ratio (long and thin) ceramic pillars

were employed to enhance the efficiency of the thickness mode. One disadvantage of the

suboptimal designs presented here is the presence of unwanted lateral modes at certain

electrode spacings that reduce the amplitude of the thickness mode and ultimately the

efficiency of the device in transmitting energy in the thickness direction.
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