157 research outputs found

    A comparative study of soviet versus western helicopters. Part 2: Evaluation of weight, maintainability and design aspects of major components

    Get PDF
    A detailed comparative insight into design and operational philosophies of Soviet vs. Western helicopters is provided. This is accomplished by examining conceptual approaches, productibility and maintainability, and weight trends/prediction methodology. Extensive use of Soviet methodology (Tishchenko) to various weight classes of helicopters is compared to the results of using Western based methodology

    Magnetotransport in graphene on silicon side of SiC

    Full text link
    We have studied the transport properties of graphene grown on silicon side of SiC. Samples under study have been prepared by two different growth methods in two different laboratories. Magnetoresistance and Hall resistance have been measured at temperatures between 4 and 100 K in resistive magnet in magnetic fields up to 22 T. In spite of differences in sample preparation, the field dependence of resistances measured on both sets of samples exhibits two periods of magneto-oscillations indicating two different parallel conducting channels with different concentrations of carriers. The semi-quantitative agreement with the model calculation allows for conclusion that channels are formed by high-density and low-density Dirac carriers. The coexistence of two different groups of carriers on the silicon side of SiC was not reported before.Comment: 5 pages, 6 figures, accepted for publication in the "IOP Journal of Physics: Conference series" as a contribution to the proceedings of the 20th International Conference on "High Magnetic Fields in Semiconductor Physics", HMF 2

    Free carrier effects in gallium nitride epilayers: the valence band dispersion

    Full text link
    The dispersion of the A-valence-band in GaN has been deduced from the observation of high-index magneto-excitonic states in polarised interband magneto-reflectivity and is found to be strongly non-parabolic with a mass in the range 1.2-1.8 m_{e}. It matches the theory of Kim et al. [Phys. Rev. B 56, 7363 (1997)] extremely well, which also gives a strong k-dependent A-valence-band mass. A strong phonon coupling leads to quenching of the observed transitions at an LO-phonon energy above the band gap and a strong non-parabolicity. The valence band was deduced from subtracting from the reduced dispersion the electron contribution with a model that includes a full treatment of the electron-phonon interaction.Comment: Revtex, 4 pages, 5 figure

    Tunnelling Studies of Two-Dimensional States in Semiconductors with Inverted Band Structure: Spin-orbit Splitting, Resonant Broadening

    Full text link
    The results of tunnelling studies of the energy spectrum of two-dimensional (2D) states in a surface quantum well in a semiconductor with inverted band structure are presented. The energy dependence of quasimomentum of the 2D states over a wide energy range is obtained from the analysis of tunnelling conductivity oscillations in a quantizing magnetic field. The spin-orbit splitting of the energy spectrum of 2D states, due to inversion asymmetry of the surface quantum well, and the broadening of 2D states at the energies, when they are in resonance with the heavy hole valence band, are investigated in structures with different strength of the surface quantum well. A quantitative analysis is carried out within the framework of the Kane model of the energy spectrum. The theoretical results are in good agreement with the tunnelling spectroscopy data.Comment: 29 pages, RevTeX, submitted in Phys.Rev.B. Figures available on request from [email protected]

    Flight of the dragonflies and damselflies

    Get PDF
    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes
    corecore