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Abstract In this paper, modeling and optimization of a highly birefringent microstructured
optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a
linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosili-
cate glass NC21A, which contributes to the anisotropy of two orthogonal polarizations of the
fundamental mode propagating in the fiber. It is shown, that an appropriate choice of thick-
ness and width of the layers constituting the core structure, enables reducing the dispersion
of birefringence of the considered modes, in a wide spectral range. It is further investigated
how a sub-wavelength defect, in form of a low refractive index glass introduced in the mid-
dle of the core, influences fiber’s birefringence. We show for the first time, that nanodefect
introduced into a lamellar core structure further reduces dispersion of birefringence in the
fiber over one octave range. An average birefringence of 1.95 x 10~ with variation below
5% is achieved in 800-2,000 nm bandwidth.

Keywords Highly birefringent fiber - Microstructure fibers - Anisotropic materials - Finite
difference time domain method
1 Introduction

Birefringence in optical fibers has been attracting scientific interest for over 30 years (Ulrich
and Simon 1979). Various methods for introduction of bierfringence in optical fibers were
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studied (Klein and Heinlein 1982; Varnham et al. 1983). Recently, highly birefringent
fibers are one of the most successful applications of microstructured optical fibers (MOFs)
(Ortigosa-Blanch et al. 2000). Due to flexibility of design, this approach offers various mech-
anisms to introduce two-fold symmetry in a fiber. MOFs usually exhibit much higher birefrin-
gence values than their conventional counter-parts such as elliptical core, bow tie and panda
type optical fibers (Frazao et al. 2008). MOFs with air holes benefit from low temperature
sensitivity, therefore they are good candidates for various mechanical sensors such as strain,
stress or pressure (Martynkien et al. 2009). A lot of interest attract MOFs with elliptical holes
in a hexagonal or rectangular lattice, since they offer theoretically very high birefringence
in the order of B = 1072 (Yue et al. 2007). However, practical parameters of these types of
structures are limited by available technology and their fabrication repeatability (Buczynski
et al. 2010; Kujawa et al. 2012; Beltrdn-Mejia et al. 2010).

Development of all-solid birefringent MOFs is studied as an alternative approach. Various
two-fold geometries were tested for the development of highly birefringent photonic bandgap
fibers (Goto et al. 2008) or single polarization fibers (Cerqueira et al. 2011; Goto et al. 2009).
Another all-solid glass approach was proposed by Wang at al. (Wang et al. 2005), where
birefringence was induced by effective anisotropy of subwavelength structure of the core,
instead of commonly used birefringence of photonic cladding of the fibers. The considered
fiber consisted of several interleaved layers built of two commercial Schott glasses: SF6 (ng =
1.79) and LLF1 (ng = 1.54). This type of core structure was originally named as "lamellar
core’. Similar approach was used by Waddie at al. for development of volumetric anisotropic
materials (Waddie et al. 2011). However in this case, another set of lead-silicate glass F2 and
silicate glass NC21A was used. According to performed simulations, an anisotropic structure
shows similar birefringence of 2 x 1072 in a broad wavelength range of 800-2,000nm. In
this paper, a complete electromagnetic (EM) design cycle and an optimization process of a
highly birefringent fiber with an anisotropic lamellar core made of F2 and NC21A glasses is
demonstrated.

Broadbandly flat birefringence in optical fibers is required in interferometric sensor sys-
tems, where broadband sources are used. It allows to keep similar sensitivity of measurement
in all measurement range (Frazao et al. 2007). In this paper, for the first time to our best
knowledge, we consider introduction of a nanodefect in the lamellar core and we study
its influence on birefringence characteristics. Use of a nanostructure in the fiber core was
successfully verified in case of development of nonlinear all-solid MOFs with flat disper-
sion (Buczynski et al. 2011). The study is undertaken with the aid of a finite difference
time domain (FDTD) method (Taflove and Hagness 2005), implemented in the QuickWave
software package (QuickWave-3D 1997).

2 Electromagnetic model of birefringent fiber with a lamellar core

In this section we investigate a MOF with an anisotropic lamellar core. The core is made
of two types of glasses, commercial F2 (ng = 1.619) and in-house synthesized NC21A
(ng = 1.518), stacked alternately, and surrounded with NC21A glass. We denote X axis
along layers in the core and Y axis perpendicular to layers in the core. Details of both
glasses were provided in (Lorenc et al. 2008). Since the geometry is invariant along the fiber,
an FDTD analysis is limited to a transverse cross-section of the fiber with an analytically
imposed longitudinal phase constant 8. Moreover, the symmetry of both the structure and
the considered modes enables further reduction of a two-dimensional (2D) analysis to the
quarter of the cross-section. As it is shown in Fig. 1, two boundaries of the FDTD model
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Highly birefringent microstructured optical fiber 79

Fig. 1 An FDTD model of a quarter of a microstructured optical fiber’s cross-section

are equipped with magnetic and electric boundary conditions, while the remaining sides
are terminated with absorbing boundary conditions (Mei and Fana 1992). Consequently,
computational effort is substantially reduced.

Refractive index n for each of the glasses is given by the Sellmeier equation:
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where A is a wavelength, and B 23 and Cj 3 are Sellmeier coefficients. The model is

converted to a triple-pole Lorentz model, which is well-known in FDTD routines:
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where e is optical relative permittivity, & is static relative permittivity, f,1,2 3 stand for
frequencies of poles, f1 2,3 representrelaxation frequencies, and A 2 3 denote weight coeffi-
cients of the corresponding dispersive poles. Table 1 shows Sellmeier and Lorentz coefficients
for both types of glasses.

Sellmeier coefficients are converted into Lorentz coefficient with following equations:

B B3
Al=1,es=A1(B1—1),Ay = ——, Ay = —— 3
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C C C
== fro=—= ;3= —= (3b)
r Vet NN VC3

To determine birefringence in a given spectral range, several FDTD simulations need to be
performed for a given range of the longitudinal phase constant 8 :

Br = ——nefr = Tfnefﬂ “

In each simulation iteration for the imposed B, the structure shown in Fig. 1 is excited with
a point source driven with the Kronecker delta to cover the whole investigated spectrum.
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Table 1 Sellmeier and Lorentz

coefficients of the lead-silicate F2 Model type Parameters Glass type
and silicate NC21A glasses NC21A 0]
Sellmeier B 1.15702 1.34533
B, 0.149600 0.20907
B3 1.36007 0.93736
Ci(wm?) 0.00614 0.009980
Cp(um?) 0.02522 0.04704
Cz(um?) 122.84413 111.88676
Lorentz €00 1.00000 1.00000
es 2.15700 2.34530
fp1 (PHz) 3.82556 3.00136
fp2 (PHz) 1.88786 1.38226
fp3 (PHz) 0.0270494 0.0283424
A4 1.00000 1.00000
Ap 0.12930 0.15540
Az 1.17550 0.69670

The next step is identification of the fundamental mode and its frequency f. Those results,
together with (3), allow determining effective refractive index n. s of a mode for the imposed
B r. That procedure has to be performed for both vertical (Ey) and horizontal (Ex) polarization
components of the mode, by exchanging electric and magnetic boundary conditions depicted
in Fig. 1. Subsequently, birefringence B can be obtained as:

B =nerrx — neffy, %)

where nerry, nefp, are effective refractive indices of both fundamental modes. The time
complexity of proposed algorithm is similar to other commonly used methods for modeling
of MOFs as finite difference or finite element method. Most of the currently used methods
for modeling of linear properties of MOFs use the same approach, where spectral plots of
effective refractive index are obtained on a point by point basis. In some cases methods (Finite
element method, finite difference) are adopted to trace a solution only in the proximity of a
given mode (mode spectral tracing). In our case we obtain solutions for all the spectrum in
parallel (Salski et al. 2010).

3 Modeling results

In this Section, the impact of the geometry of the fiber on the dispersion and birefringence is
evaluated. First, a lattice constant A is swept from 300nm up to 900nm:

A=d +dy, (6)
while maintaining a filling factor:

_a
f=g ™

equal to f = 1, where d;, d, stand for the thickness of the strips inside the lamellar core
as depicted in Fig. 1. Table 2 presents the list of considered dimensions of the scenario,
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Table 2 Geometrical parameters

of the tested fiber structures Filling factor f =1

A (nm) 300 600 900
d1 (nm) 150 300 450
d2 (nm) 150 300 450
a (nm) 3,580 7,160 10,740

1.6 T - - ; ; wneffy A =900 nm

==neffx A =900 nm

1,58 [ g neffy A = 600 nm

==neffx A =600 nm
F T — moneffy A =300 nm
% 1.5 ., i u - =neffx A =300 nm
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Fig.2 Effective refractive index for the polarization component of fundamental mode (Ex and Ey) for various
lattice constants A. The polarization component E denotes direction of electric field vector along layers in
the core (X axis), while Ey denotes direction of electric field vector perpendicular to layers in the core
(Y axis)
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Fig. 3 Group velocity dispersion of the horizontally polarized component of fundamental mode (Ex) for
various lattice constants A. The polarization component Ex denotes direction of electric field vector along
layers in the core (X axis)

indicating that the length a of the strips is rescaled with the lattice constant A, accordingly.
We assume that the fiber core consists of seven layer pairs of high and low refractive index
glass. Therefore core is rectangular with diameters is a x b, where b = 7A and a is given
arbitrarily. However core aspect ratio a/b is constant in all considered cases.

A series of EM simulations of the structure shown in Fig. 1, were performed using FDTD.
Figures 2, 3 and 4 show obtained effective refractive index and dispersion profiles of vertically
and horizontally polarized fundamental modes are shown, respectively. It can be seen that
dispersion of both fundamental modes is very similar and can be controlled by adjustment
of the lattice constant A. A zero dispersion wavelength (ZDW) increases with the increasing
lattice constant A from 1.2 um up to about 1.7 wm, thus, giving the means to control ZDW
within the third telecommunication window.
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Fig. 4 Group velocity dispersion of the vertically polarized component of fundamental mode (Ey) for various

lattice constants A. The polarization components Ey denotes direction of electric field vector perpendicular
to layers in the core (Y axis)
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Fig. 5 The birefringence calculated for various lattice constants A
Table 3 Geometrical parameters
of the tested fiber structures Lattice constant A = 300 nm
Filling factor f 0.2 0.5 1 2 5
d1 (nm) 50 100 150 200 250
d2 (nm) 250 200 150 100 50

As can be seen in Fig. 5, birefringence B oscillates with wavelength below A = 1,000 nm
due to resonant behavior of the core at wavelengths comparable with the lattice constant A.
For wavelengths longer than 1,000 nm, these oscillations are no longer observed. In particular,
dispersion of birefringence remains low in the wavelength range of 1,100-1,700 nm for the
lattice constant of A = 900 nm, where it varies around 1.92 x 1073 in the range of £6 %
(Fig. 5).

In a subsequent step, a series of numerical simulations for different values of the filling
factor for A = 300 nm is performed, as summarized in Table 3. Figures 6, 7 and 8 show
effective refractive index, phase birefringence and dispersion of vertically and horizontally
polarized components of fundamental modes, respectively.

As previously, we observe oscillations of birefringence B for wavelengths below 1,000 nm
due to resonant interaction between light and anisotropic structure of the core (wavelengths
shorter than 1,000 nm are comparable to the lattice constant A, Fig. 8). All considered struc-
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Fig. 6 Effective refractive index of vertically and horizontally polarized components of fundamental modes
for the lattice constant A = 300 nm and various filling factors of layers in the lamellar core
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Fig. 7 Group velocity dispersion of vertically and horizontally polarized components of fundamental modes
for the lattice constant A = 300 nm and various filling factors of layers in the lamellar core
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Fig. 8 Birefringence of fundamental modes for the lattice constant A = 300 nm and various filling factors
of layers in the lamellar core

tures show low dispersion of birefringence. On the other hand, zero dispersion wavelength
(ZDW) of polarization components of the fundamental mode strongly depends on filling
factor. ZDW increases with the increasing f from 1 wm for f = 0.2 up to about 1.3 wm for
f = 5. As result, modal dispersion properties of the fiber can be adjusted with a change of
filling factor, while birefringence remains almost constant.
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Core without defect

Fig. 9 a An FDTD model of a quarter of a microstructured optical fiber’s cross-section without a defect; b
Electric field’s magnitude of a horizontally polarized component of the fundamental mode; ¢ Electric field’s
vector view of a horizontally polarized component of the fundamental mode; d Electric field’s magnitude of a
vertically polarized component of the fundamental mode; e Electric field’s vector view of a vertically polarized
component of the fundamental mode

High values of birefringence are achieved for structures with filling factors of f = 1 or
2. Maximum value of 2.3 x 1073 is obtained for wavelengths above 1.9 wm when filling
factor is close to 1. In particular, dispersion of birefringence is low in the wavelength range
of 900-1,700 nm for the structure with a lattice constant of A = 300 nm and filling factor of
f = 0.5, where birefringence B varies around 1.47 x 103 in the range of 46 %.
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Core with defect

(d
Fig. 10 a An FDTD model of a quarter of a microstructured optical fiber’s cross-section with a defect; b
Electric field’s magnitude of a horizontally polarized component of the fundamental mode; ¢ Electric field’s
vector view of a horizontally polarized component of the fundamental mode; d Electric field’s magnitude of a

vertically polarized component of the fundamental mode; e Electric field’s vector view of a vertically polarized
component of the fundamental mode

4 Highly birefringent fiber with a subwavelength defect in the core

To reduce further dispersion of birefringence, we consider an introduction of a subwavelength
defect into the lamellar core. To verify this concept, we compared properties of the fiber with
a regular lamellar core, with the fiber featuring an additional nanodefect in the core. Two
scenarios are hence investigated numerically: a fiber with a nondefected core (Fig. 9) and
a fiber with a subwavelength defect introduced in the core (Fig. 10). We assume a fiber
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Fig. 11 The effective refractive index for both polarization components of the fundamental mode (Ex and
Ey) in the fiber shown in Figs. 9 and 10
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Fig. 12 Group velocity dispersion for both polarization components of the fundamental mode (Ex and Ey)
in the fiber

with lamellar core with a lattice constant of A = 1,060 nm and filling factor f = 1. A
subwavelength defect in the core is located in the middle of central layer of F2 glass. Size of
defect is 2,220 nm, where F2 glass is replaced with NC21A glass (Fig. 10a).

It can be noticed in Fig. 9 that both fundamental modes are well confined inside the core.
The anisotropic core does not affect the smoothness of the electric field, which is tangential
to the boundaries between the host and lamellar inclusions (see Fig. 9b). On the contrary,
the electric field of the vertically polarized mode is discontinuous at the aforementioned
boundaries (see Fig. 9d), thus, contributing to the birefringence of those modes. However,
introduction of a defect in the middle of the core decreases the magnitude of the electric field
for both polarizations (see Fig. 10).

Figures 11, 12 and 13 present obtained results of numerical simulations for the structures,
such as effective refractive index, dispersion and birefringence for vertical and horizontal
polarization components of the fundamental mode.

The obtained results show, that for both analyzed MOF structures, high similarity of the
effective refractive index and group velocity dispersion D is achieved (Figs. 11, 12). On the
other hand, birefringence is different for both considered cases. Dispersion of birefringence
in the fiber with core including a subwavelength defect is significantly lower than in the
case of a regular lamellar core. Birefringence of the fiber with a regular lamellar core is
B=1.92 and varies in the range of 600-2,000 nm by +15 %. Birefringence of the fiber with
an additional subwavelength defect in the core is B=1.98 and it varies by 5 % in the range
of 600-2,000nm wavelengths. In particular, introduction of a defect in the core flattens the
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Fig. 13 Birefringence calculated for both polarization components of the fundamental mode (Ex and Ey) in
the fiber shown in Figs. 9 and 10

birefringence (AB = 0.03) in comparison to the structure without a defect (AB = 0.155)
in the rage of 900-1,650 nm wavelengths.

5 Conclusions

We have shown, that appropriate tuning of microstructure in fiber with lamellar core, enables
simultaneous manipulation of the dispersion and birefringence in a certain spectral range.
Silicate-based microstructured optical fibers with a core made of interlined layers of two
glasses NC21A and F2 and lattice constant of 900 nm enable to obtain flat birefringence over
the spectral range of 600nm (1,100-1,700nm) with birefringence variation below =6 %.
Additional improvement of the structure by means of introduction of an additional defect
in the lamellar core allows further reduction of birefringence dispersion. A fiber with such
an additional subwavelength defect in the core enables obtaining of the birefringence at the
level of B =1.98 with variation below £5 % over the spectral range 600-2,000 nm.

Acknowledgments This work was supported by the project TEAM/2012-9/1 operated within the Foundation
for Polish Science Team Programme co-financed by the European Regional Development Fund, Operational
Program Innovative Economy 2007-2013.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.

References

Beltrdn-Mejia, F., Chesini, G., Silvestre, E., George, A K., Knight, J.C., Cordeiro, C.M.: Ultrahigh-birefringent
squeezed lattice photonic crystal fiber with rotated elliptical air holes. Opt. Lett. 35, 544-546 (2010)

Buczynski, R., Kujawa, 1., Pysz, D., Martynkien, T., Berghmans, F., Thienpont, H., Stepien, R.: Highly
birefringent soft glass rectangular photonic crystal fibers with elliptical holes. Appl. Phys. B 99, 13-17
(2010)

Buczynski, R., Pysz, D., Stepien, R., Kasztelanic, R., Kujawa, 1., Franczyk, M., Filipkowski, A., Waddie, A.J.,
Taghizadeh, M.R.: Dispersion management in nonlinear photonic crystal fibres with nanostructured core.
J. Eur. Opt. Soc. Rapid Publ. 6, 11038 (2011)

Cerqueira Jr, S.A., Lona, D.G., de Oliveira, 1., Hernandez-Figueroa, H.E., Fragnito, H.L.: Broadband single-
polarization guidance in hybrid photonic crystal fibers. Opt. Lett. 36, 133—135 (2011)

@ Springer



88 M. Swat et al.

Frazao, O., Baptista, .M., Santos, J.L.: Recent advances in high-birefringence fiber loop mirror sensors.
Sensors 7, 2970-2983 (2007)

Frazao, O., Santos, J., Araujo, Ferreira, F.L.: Optical sensing with photonic crystal fibers. Laser Photon. Rev.
2, 449-459 (2008)

Goto, R., Jackson, S.D., Fleming, S., Kuhlmey, B.T., Eggleton, B.J., Himeno, K.: Birefringent all-solid hybrid
microstructured fiber. Opt. Express 16, 18752—18763 (2008)

Goto, R.,Jackson, S.D., Takenaga, K.: Single-polarization operation in birefringent all-solid hybrid microstruc-
tured fiber with additional stress applying parts. Opt. Lett. 34, 3119-3121 (2009)

Klein, K.-F., Heinlein, W.E.: Orientation- and polarisation-dependent cutoff wavelengths in elliptical-core
single-mode fibres. Electron. Lett. 18, 640-641 (1982)

Kujawa, I., Buczynski, R., Martynkien, T., Sadowski, M., Pysz, D., Stepien, R., Waddie, A.J., Taghizadeh,
M.R.: Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with
elliptical holes in soft glass. Opt. Fiber Technol. 18, 220-225 (2012)

Lorenc, D., Aranyosiova, M., Buczynski, R., Stepien, R., Bugar, I, Vincze, A., Velic, D.: Nonlinear refractive
index of multicomponent glasses designed for fabrication of photonic crystal fibers. Appl. Phys. B: Lasers
Opt. 93, 531-538 (2008)

Martynkien, T., Anuszkiewicz, A., Statkiewicz-Barabach, G., Olszewski, J., Golojuch, G., Szczurowski, M.,
Urbanczyk, W., Wojcik, J., Mergo, P., Makara, M., Nasilowski, T., Berghmans, F., Thienpont, H.: Birefrin-
gent photonic crystal fibers with zero polarimetric sensitivity to temperature. Appl. Phys. B 94, 635-640
(2009)

Mei, K.K., Fana, J.: Superabsorption: a method to improve absorbing boundary conditions. IEEE Trans.
Antennas Propag. 40, 1001-1010 (1992)

Ortigosa-Blanch, A., Knight, J.C., Wadsworth, W.J., Arriaga, J., Mangan, B.J., Birks, T.A., Russell, P.St.J.:
Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325-1327 (2000)

QuickWave-3D, QWEDSp. z 0.0., 1997-2013. Available:http://www.qwed.com.pl

Salski, B., Celuch, M., Gwarek, W.: FDTD for nanoscale and optical problems. Microw. Mag. 11(2), 50-59
(2010)

Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method.
Artech House, Boston (2005)

Ulrich, R., Simon, A.: Polarization optics of twisted single-mode fibers. Appl. Opt. 18, 2241-2251 (1979)

Varnham, M.P., Payne, D.N., Birch, R.D., Tarbox, E.J.: Single-polarisation operation of highly birefringent
bow-tie optical fibres. Electron. Lett. 19, 246-247 (1983)

Waddie, A.J., Buczynski, R., Hudelist, F., Nowosielski, J., Pysz, D., Stepien, R., Taghizadeh, M.R.: Form
birefringence in nanostructured micro-optical devices. Opt. Mater. Express 1, 1251-1261 (2011)

Wang, A., George, A., Liu, J., Knight, J.: Highly birefringent lamellar core fiber. Opt. Express 13, 5988-5993
(2005)

Yue, Y., Kai, G., Wang, Z., Sun, T., Jin, L., Lu, Y., Zhang, C., Liu, J., Li, Y., Liu, Y., Yuan, S., Dong, X.: Highly
birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice. Opt. Lett. 32, 469-471
(2007)

@ Springer


http://www.qwed.com.pl

	Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core
	Abstract
	1 Introduction
	2 Electromagnetic model of birefringent fiber with a lamellar core
	3 Modeling results
	4 Highly birefringent fiber with a subwavelength defect in the core
	5 Conclusions
	Acknowledgments
	References


