1,567 research outputs found

    New insights into volcanic processes at Stromboli from Cerberus, a remote-controlled open-path FTIR scanner system

    Get PDF
    The ordinary, low intensity, activity of Stromboli volcano is sporadically interrupted by more energetic events termed, depending on their intensity, “major explosions” and “paroxysms”. These short-lived energetic episodes represent a potential risk to visitors to the highly accessible summit of Stromboli. Observations made at Stromboli over the last decade have shown that the composition of gas emitted from the summit craters may change prior to such explosions, allowing the possibility that such changes may be used to forecast these potentially dangerous events. In 2008 we installed a novel, remote-controlled, open-path FTIR scanning system called Cerberus at the summit of Stromboli, with the objective of measuring gas compositions from individual vents within the summit crater terrace of the volcano with high temporal resolution and for extended periods. In this work we report the first results from the Cerberus system, collected in August-September 2009, November 2009 and May-June 2010. We find significant, fairly consistent, intra-crater variability for CO2/SO2 and H2O/CO2 ratios, and relatively homogeneous SO2/HCl ratios. In general, the southwest crater is richest in CO2, and the northeast crater poorest, while the central crater is richest in H2O. It thus appears that during the measurement period the southwest crater had a somewhat more direct connection to a primary, deep degassing system; whilst the central and northeast craters reflect a slightly more secondary degassing nature, with a supplementary, shallow H2O source for the central crater, probably related to puffing activity. Such water-rich emissions from the central crater can account for the lower crystal content of its eruption products, and emphasise the role of continual magma supply to the shallowest levels of Stromboli's plumbing system. Our observations of heterogeneous crater gas emissions and high H2O/CO2 ratios do not agree with models of CO2-flushing, and we show that simple depressurisation during magma ascent to the surface is a more likely model for H2O loss at Stromboli. We highlight that alternative explanations other than CO2 flushing are required to explain distributions of H2O and CO2 amounts dissolved in melt inclusions. We detected fairly systematic increases in CO2/SO2 ratio some weeks prior to major explosions, and some evidence of a decrease in this ratio in the days immediately preceding the explosions, with periods of low, stable CO2/SO2 ratios between explosions otherwise. Our measurements, therefore, confirm the medium term (~ weeks) precursory increases previously observed with MultiGas instruments, and, in addition, reveal new, short-term precursory decreases in CO2/SO2 ratios. immediately prior to the major explosions. Such patterns, if shown to be systematic, may be of great utility for hazard management at Stromboli's summit. Our results suggest that intra-crater CO2/SO2 variability may produce short-term peaks and troughs in CO2/SO2 time series measured with in-situ MultiGas instruments, due simply to variations in wind direction

    The role of syn-eruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy

    Get PDF
    We investigated the dynamics of explosive activity at Mt. Etna between 31 August and 15 December 2006 by combining vesicle studies in the erupted products with measurements of the gas composition at the active, summit crater. The analysed scoria clasts present large, connected vesicles with complex shapes and smaller, isolated, spherical vesicles, the content of which increases in scoriae from the most explosive events. Gas geochemistry reports CO2/SO2 and SO2/HCl ratios supporting a deep-derived gas phase for fire-fountain activity. By integrating results from scoria vesiculation and gas analysis we find that the highest energy episodes of Mt. Etna activity in 2006 were driven by a previously accumulated CO2-rich gas phase but we highlight the lesser role of syn-eruptive vesicle nucleation driven by water exsolution during ascent. We conclude that syn-eruptive vesiculation is a common process in Etnean magmas that may promote a deeper conduit magma fragmentation and increase ash formation

    The role of syn-eruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy

    Get PDF
    We investigated the dynamics of explosive activity at Mt. Etna between 31 August and 14 December 2006 by combining vesicle studies in the erupted products with measurements of the gas composition at the active, summit crater. The analysed scoria clasts present large, connected vesicles with complex shapes and smaller, isolated, spherical vesicles, the content of which increases in scoriae from the most explosive events. Gas geochemistry reports CO2/SO2 and SO2/HCl ratios supporting a deep-derived gas phase for fire-fountain activity. By integrating results from scoria vesiculation and gas analysis we find that the highest energy episodes of Mt. Etna activity in 2006 were driven by a previously accumulated CO2-rich gas phase but we highlight the lesser role of syn-eruptive vesicle nucleation driven by water exsolution during ascent. We conclude that syn-eruptive vesiculation is a common process in Etnean magmas that may promote a deeper conduit magma fragmentation and increase ash formatio

    Plasma Concentrations of Risperidone and Olanzapine during Coadministration with Oxcarbazepine

    Get PDF
    Purpose: Oxcarbazepine (OZC) is a secondgeneration antiepileptic drug (AED) that also may be used as a mood stabilizer. Unlike carbamazepine (CBZ), which is an inducer of the cytochrome P-450 isoforms and may accelerate the elimination of several therapeutic agents, OXC seems to have only a modest inducing action. The aim of this investigation was to evaluate the effect of a treatment with OXC on plasma concentrations of the new antipsychotics risperidone and olanzapine. Methods: OXC, at a dosage of 900–1,200 mg/day, was administered for 5 consecutive weeks to 25 outpatients, 10 men and 15 women, aged 25 to 64 years, with bipolar or schizoaffective disorder. Twelve patients were stabilized on risperidone therapy (2–6 mg/day) and 13 on olanzapine (5–20 mg/day). Steady-state plasma concentrations of risperidone and its active metabolite 9-hydroxyrisperidone (9-OH-risperidone) and olanzapine were measured by high-pressure liquid chromatography (HPLC) before addition of OXC and after 5 weeks from the start of adjunctive treatment. Results:OXC caused only minimal and no significant changes in the mean plasma levels of risperidone (from 5.6±3.6 ng/ml at baseline to 4.8 ± 2.6 ng/ml at week 5), 9-OH-risperidone (from 23.6±7.5 to 24.7±7.4 ng/ml), and olanzapine (from 26.5±5.7 ng/ml at baseline to 27.8 ± 5.1 ng/ml). OXC coadministration with either risperidone or olanzapine was well tolerated. Conclusions: Our findings indicate that OXC does not affect the elimination of risperidone and olanzapine, thus confirming its weak inducing effect on hepatic drug-metabolizing enzymes

    Adhesion between oppositely-charged polyelectrolytes

    Get PDF
    The adhesion between a grafted polyelectrolyte layer (brush) and a gel of an oppositely charged polyelectrolyte has been measured as a function of applied pressure, and the interface has been traced using neutron reflectometry. The interface (in aqueous medium at pH 6) between the (polycationic) brush and the (polyanionic) gel has a limited pressure-dependence, with a small amount of deformation of the interface at the brush-gel contact. Brushes with a dry thickness of up to 13 nm exhibit weak adhesion (measured using a mechanical force tester) with an adhesive failure when the gel is detached. Thicker brushes result in the gel exhibiting cohesive failure. Reversing the geometry, whereby a polycationic brush is replaced with a polyanion and the polyanionic gel is replaced with a polycation reveals that the pH-dependence of the adhesion is moderately symmetric about pH 6, but that the maximum force required to separate the polycation gel from the polyanion brush over the range of pH is greater than that for the polycation brush and polyanion gel. The polyanion used is poly(methacrylic acid) (PMAA) and polycations of poly[2-(diethyl amino)ethyl methacrylate] (PDEAEMA) and poly[2-(dimethyl amino)ethyl methacrylate] (PDMAEMA) were used

    Creation of dense polymer brush layers by the controlled deposition of an amphiphilic responsive comb polymer

    Get PDF
    We introduce a copolymer with a comb topology that has been engineered to assemble in a brush configuration at an air-water interface. The molecule comprises a 6.1 kDa poly(methyl methacrylate) backbone with a statistical amount of poly[2-(dimethyl amino)ethyl methacrylate] polybase side chains averaging 2.43 per backbone.. Brush layers deposited with the hydrophobic PMMA backbone adsorbed to hydrophobized silicon are stable in water even when stored at pH values less than 2.0 for over 24 h. The use of a Langmuir trough allows a simple controlled deposition of the layers at a variety of grafting densities. Depth profiling of brush layers was performed using neutron reflectometry and reveals a significant shifting of the responsiveness of the layer upon changing the grafting density. The degree of swelling of the layers at a pH value of 4 (below the pK(b)) decreases as grafting density increases. Lowering the pH of the subphase during deposition causes the side chains to become charged and more hydrophilic extending to a brush-like configuration while at neutral pH the side chains lie in a "pancake" conformation at the interface. (C) 2009 Elsevier Ltd. All rights reserved

    Installation and first results from a remote-controlled automatic FTIR spectrometer on

    Get PDF
    The first successful FTIR measurements on Stromboli were conducted in 2000, producing remarkable insights into the rapidly changing dynamics of degassing and explosive processes. The ability of the FTIR to simultaneously measure all the major species contained in volcanic gas emissions (H2O, CO2, SO2, HCl, HF, CO, OCS, SiF4) at high temporal resolution, when combined with the automatic SO2 flux monitoring system already installed on Stromboli could allow fluxes of all these gases to be determined accurately and automatically. In order to achieve this objective, we have designed a remotely controlled FTIR-scanner system that allows directional control over the field of view of the spectrometer. The system is planned for installation in June/July 2008, and we will present the first results from the system in this paper

    Plasma Tau and Neurofilament Light in Frontotemporal Lobar Degeneration and Alzheimer Disease

    Get PDF
    Objective: To test the hypothesis that plasma total tau (t-tau) and neurofilament light chain (NfL) concentrations may have a differential role in the study of frontotemporal lobar degeneration syndromes (FTLD-S) and clinically diagnosed Alzheimer disease syndromes (AD-S), we determined their diagnostic and prognostic value in FTLD-S and AD-S and their sensitivity to pathologic diagnoses. Methods: We measured plasma t-tau and NfL with the Simoa platform in 265 participants: 167 FTLD-S, 43 AD-S, and 55 healthy controls (HC), including 82 pathology-proven cases (50 FTLD-tau, 18 FTLD-TDP, 2 FTLD-FUS, and 12 AD) and 98 participants with amyloid PET. We compared cross-sectional and longitudinal biomarker concentrations between groups, their correlation with clinical measures of disease severity, progression, and survival, and cortical thickness. Results: Plasma NfL, but not plasma t-tau, discriminated FTLD-S from HC and AD-S from HC. Both plasma NfL and t-tau were poor discriminators between FLTD-S and AD-S. In pathology-confirmed cases, plasma NfL was higher in FTLD than AD and in FTLD-TDP compared to FTLD-tau, after accounting for age and disease severity. Plasma NfL, but not plasma t-tau, predicted clinical decline and survival and correlated with regional cortical thickness in both FTLD-S and AD-S. The combination of plasma NfL with plasma t-tau did not outperform plasma NfL alone. Conclusion: Plasma NfL is superior to plasma t-tau for the diagnosis and prediction of clinical progression of FTLD-S and AD-S. Classification of Evidence: This study provides Class III evidence that plasma NfL has superior diagnostic and prognostic performance vs plasma t-tau in FTLD and AD
    • …
    corecore