233 research outputs found

    Effects of Detergent on α-Synuclein Structure: A Native MS-Ion Mobility Study

    Get PDF
    The intrinsically disordered protein α-synuclein plays a major role in Parkinson’s disease. The protein can oligomerize resulting in the formation of various aggregated species in neuronal cells, leading to neurodegeneration. The interaction of α-synuclein with biological cell membranes plays an important role for specific functions of α-synuclein monomers, e.g., in neurotransmitter release. Using different types of detergents to mimic lipid molecules present in biological membranes, including the presence of Ca2+ ions as an important structural factor, we aimed to gain an understanding of how α-synuclein interacts with membrane models and how this affects the protein conformation and potential oligomerization. We investigated detergent binding stoichiometry, affinity and conformational changes of α-synuclein taking detergent concentration, different detergent structures and charges into account. With native nano-electrospray ionization ion mobility-mass spectrometry, we were able to detect unique conformational patterns resulting from binding of specific detergents to α-synuclein. Our data demonstrate that α-synuclein monomers can interact with detergent molecules irrespective of their charge, that protein-micelle interactions occur and that micelle properties are an important factor

    The Escherichia coli RnlA–RnlB toxin–antitoxin complex: production, characterization and crystallization

    Get PDF
    The Escherichia coli rnlAB operon encodes a toxin–antitoxin module that is involved in protection against infection by bacteriophage T4. The full-length RnlA–RnlB toxin–antitoxin complex as well as the toxin RnlA were purified to homogeneity and crystallized. When the affinity tag is placed on RnlA, RnlB is largely lost during purification and the resulting crystals exclusively comprise RnlA. A homogeneous preparation of RnlA–RnlB containing stoichiometric amounts of both proteins could only be obtained using a His tag placed C-terminal to RnlB. Native mass spectrometry and SAXS indicate a 1:1 stoichiometry for this RnlA–RnlB complex. Crystals of the RnlA–RnlB complex belonged to space group C2, with unit-cell parameters a = 243.32, b = 133.58, c = 55.64 Å, β = 95.11°, and diffracted to 2.6 Å resolution. The presence of both proteins in the crystals was confirmed and the asymmetric unit is likely to contain a heterotetramer with RnlA2:RnlB2 stoichiometry

    Opposite Structural Effects of Epigallocatechin-3-gallate and Dopamine Binding to α-Synuclein

    Get PDF
    The intrinsically disordered and amyloidogenic protein α-synuclein (AS) has been linked to several neurodegenerative states, including Parkinson's disease. Here, nanoelectrospray-ionization mass spectrometry (nano-ESI-MS), ion mobility (IM), and native top-down electron transfer dissociation (ETD) techniques are employed to study AS interaction with small molecules known to modulate its aggregation, such as epigallocatechin-3-gallate (EGCG) and dopamine (DA). The complexes formed by the two ligands under identical conditions reveal peculiar differences. While EGCG engages AS in compact conformations, DA preferentially binds to the protein in partially extended conformations. The two ligands also have different effects on AS structure as assessed by IM, with EGCG leading to protein compaction and DA to its extension. Native top-down ETD on the protein-ligand complexes shows how the different observed modes of binding of the two ligands could be related to their known opposite effects on AS aggregation. The results also show that the protein can bind either ligand in the absence of any covalent modifications, such as oxidation

    Native Ion Mobility-Mass Spectrometry Reveals the Formation of β-Barrel Shaped Amyloid-β Hexamers in a Membrane-Mimicking Environment.

    Get PDF
    The mechanisms behind the Amyloid-β (Aβ) peptide neurotoxicity in Alzheimer's disease are intensely studied and under debate. One suggested mechanism is that the peptides assemble in biological membranes to form β-barrel shaped oligomeric pores that induce cell leakage. Direct detection of such putative assemblies and their exact oligomeric states is however complicated by a high level of heterogeneity. The theory consequently remains controversial, and the actual formation of pore structures is disputed. We herein overcome the heterogeneity problem by employing a native mass spectrometry approach and demonstrate that Aβ(1-42) peptides form coclusters with membrane mimetic detergent micelles. The coclusters are gently ionized using nanoelectrospray and transferred into the mass spectrometer where the detergent molecules are stripped away using collisional activation. We show that Aβ(1-42) indeed oligomerizes over time in the micellar environment, forming hexamers with collision cross sections in agreement with a general β-barrel structure. We also show that such oligomers are maintained and even stabilized by addition of lipids. Aβ(1-40) on the other hand form significantly lower amounts of oligomers, which are also of lower oligomeric state compared to Aβ(1-42) oligomers. Our results thus support the oligomeric pore hypothesis as one important cell toxicity mechanism in Alzheimer's disease. The presented native mass spectrometry approach is a promising way to study such potentially very neurotoxic species and how they could be stabilized or destabilized by molecules of cellular or therapeutic relevance

    Thermodynamic Stability of the Transcription Regulator PaaR2 from Escherichia coli O157:H7

    Get PDF
    PaaR2 is a putative transcription regulator encoded by a three-component parDE-like toxin-antitoxin module from Escherichia coli O157:H7. Although this module’s toxin, antitoxin, and toxin-antitoxin complex have been more thoroughly investigated, little remains known about its transcription regulator PaaR2. Using a wide range of biophysical techniques (circular dichroism spectroscopy, size-exclusion chromatography-multiangle laser light scattering, dynamic light scattering, small-angle x-ray scattering, and native mass spectrometry), we demonstrate that PaaR2 mainly consists of α-helices and displays a concentration-dependent octameric build-up in solution and that this octamer contains a global shape that is significantly nonspherical. Thermal unfolding of PaaR2 is reversible and displays several transitions, suggesting a complex unfolding mechanism. The unfolding data obtained from spectroscopic and calorimetric methods were combined into a unifying thermodynamic model, which suggests a five-state unfolding trajectory. Furthermore, the model allows the calculation of a stability phase diagram, which shows that, under physiological conditions, PaaR2 mainly exists as a dimer that can swiftly oligomerize into an octamer depending on local protein concentrations. These findings, based on a thorough biophysical and thermodynamic analysis of PaaR2, may provide important insights into biological function such as DNA binding and transcriptional regulation

    Structure of an Hsp90-Cdc37-Cdk4 complex

    Get PDF
    Activation of many protein kinases depends on their interaction with the Hsp90 molecular chaperone system. Recruitment of protein kinase clients to the Hsp90 chaperone system is mediated by the cochaperone adaptor protein Cdc37, which acts as a scaffold, simultaneously binding protein kinases and Hsp90. We have now expressed and purified an Hsp90-Cdc37-Cdk4 complex, defined its stoichiometry, and determined its 3D structure by single-particle electron microscopy. Comparison with the crystal structure of Hsp90 allows us to identify the locations of Cdc37 and Cdk4 in the complex and suggests a mechanism by which conformational changes in the kinase are coupled to the Hsp90 ATPase cycle

    Improved count rate corrections for highest data quality with PILATUS detectors

    Get PDF
    A Monte Carlo simulation is presented, which computes the rate correction factors taking into account the detector settings and the time structure of the X-ray beam. The results show good agreement with experimentally determined correction factors

    Novel electrochemiluminescent assay for the aptamer-based detection of testosterone

    Get PDF
    This work presents a proof-of-concept assay for the detection and quantification of small molecules based on aptamer recognition and electrochemiluminescence (ECL) readout. The testosterone-binding (TESS.1) aptamer was used to demonstrate the novel methodology. Upon binding of the target, the TESS.1 aptamer is released from its complementary capture probe – previously immobilized at the surface of the electrode – producing a decrease in the ECL signal after a washing step removing the released (labeled) TESS.1 aptamer. The analytical capability of the ECL assay towards testosterone detection was investigated displaying a linear range from 0.39 to 1.56 μM with a limit of detection of 0.29 μM. The selectivity of the proposed assay was assessed by performing two different negative control experiments; i) detection of testosterone with a randomized ssDNA sequence and ii) detection of two other steroids, i.e. deoxycholic acid and hydrocortisone with the TESS.1 aptamer. In parallel, complementary analytical techniques were employed to confirm the suggested mechanism: i) native nano-electrospray ionization mass spectrometry (native nESI-MS) was used to determine the stoichiometry of the binding, and to characterize aptamer-target interactions; and, ii) isothermal titration calorimetry (ITC) was carried out to elucidate the dissociation constant (Kd) of the complex of testosterone and the TESS.1 aptamer. The combination of these techniques provided a complete understanding of the aptamer performance, the binding mechanism, affinity and selectivity. Furthermore, this important characterization carried out in parallel validates the real functionality of the aptamer (TESS.1) ensuring its use towards selective testosterone binding in further biosensors. This research will pave the way for the development of new aptamer-based assays coupled with ECL sensing for the detection of relevant small molecules

    Metal ions shape α-synuclein

    Get PDF
    α-Synuclein is an intrinsically disordered protein that can self-aggregate and plays a major role in Parkinson’s disease (PD). Elevated levels of certain metal ions are found in protein aggregates in neurons of people suffering from PD, and environmental exposure has also been linked with neurodegeneration. Importantly, cellular interactions with metal ions, particularly Ca2+, have recently been reported as key for α-synuclein’s physiological function at the pre-synapse. Here we study effects of metal ion interaction with α-synuclein at the molecular level, observing changes in the conformational behaviour of monomers, with a possible link to aggregation pathways and toxicity. Using native nano-electrospray ionisation ion mobility-mass spectrometry (nESI-IM-MS), we characterize the heterogeneous interactions of alkali, alkaline earth, transition and other metal ions and their global structural effects on α-synuclein. Different binding stoichiometries found upon titration with metal ions correlate with their specific binding affinity and capacity. Subtle conformational effects seen for singly charged metals differ profoundly from binding of multiply charged ions, often leading to overall compaction of the protein depending on the preferred binding sites. This study illustrates specific effects of metal coordination, and the associated electrostatic charge patterns, on the complex structural space of the intrinsically disordered protein α-synuclein

    A dual role in regulation and toxicity for the disordered N-terminus of the toxin GraT.

    Get PDF
    Bacterial toxin-antitoxin (TA) modules are tightly regulated to maintain growth in favorable conditions or growth arrest during stress. A typical regulatory strategy involves the antitoxin binding and repressing its own promoter while the toxin often acts as a co-repressor. Here we show that Pseudomonas putida graTA-encoded antitoxin GraA and toxin GraT differ from other TA proteins in the sense that not the antitoxin but the toxin possesses a flexible region. GraA auto-represses the graTA promoter: two GraA dimers bind cooperatively at opposite sides of the operator sequence. Contrary to other TA modules, GraT is a de-repressor of the graTA promoter as its N-terminal disordered segment prevents the binding of the GraT2A2 complex to the operator. Removal of this region restores operator binding and abrogates Gr aT toxicity. GraTA represents a TA module where a flexible region in the toxin rather than in the antitoxin controls operon expression and toxin activity
    • …
    corecore