
This is a repository copy of Thermodynamic Stability of the Transcription Regulator PaaR2
from Escherichia coli O157:H7.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/146905/

Version: Accepted Version

Article:

De Bruyn, P, Hadži, S, Vandervelde, A et al. (7 more authors) (2019) Thermodynamic 
Stability of the Transcription Regulator PaaR2 from Escherichia coli O157:H7. Biophysical 
Journal, 116 (8). pp. 1420-1431. ISSN 0006-3495 

https://doi.org/10.1016/j.bpj.2019.03.015

© 2019 Biophysical Society. This is an author produced version of a paper published in 
Biophysical Journal. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 1 

Thermodynamic stability of the transcription regulator PaaR2 from Escherichia 

coli O157:H7 

 

Running title: Thermodynamic stability of PaaR2 
 

Pieter De Bruyn1,2*, San Hadži1,2,3*, Alexandra Vandervelde1,2*+, Albert Konijnenberg1,2,4, 

Maruša Prolič-Kalinšek1,2,	Yann G.-J. Sterckx1,2,5, Frank Sobott4,6,7, Jurij Lah3, Laurence Van 

Melderen8, Remy Loris1,2	

 

1 Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 

Brussel, Belgium 

2 Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium 

3 Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, 

University of Ljubljana, 1000 Ljubljana, Slovenia 

4 Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry, University 

of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium 

5 Laboratory of Medical Biochemistry, University of Antwerp (UA), Campus Drie Eiken, 

Universiteitsplein 1, 2610 Wilrijk, Belgium 

6 Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK 

7 School of Molecular and Cellular Biology, University of Leeds, Leeds, UK 

8 Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles 

(ULB), rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium  

 

Correspondence to: Remy Loris (reloris@vub.ac.be; Remy.Loris@VIB-VUB.be) 

 Tel. 0032 2 6291989 

 Fax 0032 2 6291963 

 

* These authors contributed equally to this work and should be considered joint first author. 

+ Present address: KULeuven Laboratory of Dynamics in Biological Systems, O&N I Herestraat 

49 - box 802, 3000 Leuven 

 

 

 



 2 

Abstract 

PaaR2 is a putative transcription regulator encoded by a three-component parDE-like toxin-

antitoxin module from E. coli O157:H7. While this module’s toxin, antitoxin and toxin-

antitoxin complex have been more thoroughly investigated, little remains known on its 

transcription regulator PaaR2. Using a wide range of biophysical techniques (CD spectroscopy, 

SEC-MALLS, DLS, SAXS and native mass spectrometry), we demonstrate that PaaR2 mainly 

consists of α-helices, displays a concentration-dependent octameric build-up in solution and 

that this octamer contains a global shape that is significantly non-spherical. Thermal unfolding 

of PaaR2 is reversible and displays several transitions suggesting a complex unfolding 

mechanism. The unfolding data obtained from spectroscopic and calorimetric methods were 

combined into a unifying thermodynamic model, which suggests a five-state unfolding 

trajectory. Furthermore, the model allows the calculation of a stability phase diagram, which 

shows that, under physiological conditions, PaaR2 mainly exists as a dimer that can swiftly 

oligomerize into an octamer depending on local protein concentrations. These findings, based 

on a thorough biophysical and thermodynamic analysis of PaaR2, may provide important 

insights into biological function such as DNA binding and transcriptional regulation. 

 

Introduction 

Toxin-antitoxin (TA) modules are small operons abundant in chromosomes and mobile 

genetic elements of bacteria and archaea (for reviews see refs. (1–3)). Most prevalent are the 

type II modules, where both toxin and antitoxin genes encode proteins. TA modules were 

initially discovered on low copy number plasmids where they contribute to plasmid 

stabilization via a mechanism called “post-segregational killing” (4). This mechanism depends 

on the differential proteolytic degradation of toxin and antitoxin as initially observed for F-

plasmid antitoxin CcdA (5) and later on observed for many other TA antitoxins. 

Progress to understanding the biological function(s) of TA modules has been cumbersome 

and hampered by the lack of a clear phenotype in strains in which individual TA modules have 

been knocked-out (6). TA modules have been shown to be activated via a variety of stresses 

(for a review see ref. (7)). In addition, ectopic overexpression of many toxins leads to a 

reversible stasis, at least within a certain time window (8–10). Their involvement in the 

generation or maintenance of the persister state remains unclear as the cumulative effects 

of deleting multiple TA modules in E. coli were recently attributed to the inadvertent infection 
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of mutant strains with bacteriophage φ80 and technical flaws (11, 12). Several other studies 

that claim the involvement of individual TA modules in persistence looked at dormancy rather 

than true persistence (13, 14). Nevertheless, evidence for the involvement of TA modules in 

the survival of Salmonella within macrophages remains unchallenged (15). 

Most type II toxin-antitoxin modules encode only two proteins. In such classic “two-

component” modules, the antitoxin contains a globular DNA binding domain linked to an 

intrinsically disordered toxin-neutralizing domain (For a review, see ref. (16)). Interestingly, 

when the antitoxin neutralizes the toxin, the DNA-binding ability is retained but the affinity 

of the antitoxin for its operator DNA can be strongly influenced by binding of the toxin. This 

mechanism of transcriptional regulation, where the ratio of toxin to antitoxin ensures 

repression or derepression, is called conditional cooperativity and is best understood for 

relBE, ccdAB and phd/doc (17–19). Other TA modules employ a less complex mechanism of 

transcription regulation where the toxin only acts to weaken the affinity of the antitoxin for 

its operator. Examples of the latter are found in higBA type of TA modules (20, 21). For several 

families of TA modules, members exist where the antitoxin is split into two independent 

proteins: a DNA-binding regulator and a toxin-neutralizing antitoxin. The best-known example 

of such three-component systems is the w-e-z module from Streptococcus pyogenes plasmid 

pSM19035 (22), which is related to the classic two-component pezAT modules (23). Here, 

regulation is independent of the formation of a TA complex and depends only on the regulator 

w (24, 25). 

The chromosome of E. coli O157:H7 contains two three-component TA modules related to 

the parDE family, which were termed paaR1-paaA1-parE1 and paaR2-paaA2-parE2 (26). 

Here, the operons encode a toxin (ParE1 or ParE2), an antitoxin (PaaA1 or PaaA2) and an 

additional regulator (PaaR1 or PaaR2). The antitoxin and toxin components of one of these 

modules, paaR2-paaA2-parE2, have been studied in more detail. The antitoxin PaaA2 is 

intrinsically disordered, lacks a DNA binding domain and forms two transient a-helices (27). 

Upon toxin binding, PaaA2 wraps around ParE2 in a mostly a-helical conformation and the 

resulting antitoxin-toxin complex assembles into an octamer of PaaA2-ParE2 heterodimers 

(i.e., a heterohexadecamer) (28). ParE2 adopts a fold very similar to ParE from Caulobacter 

crescentus (29), although no GyrA-binding activity was detected for ParE2 (28). The functional 

relevance of this PaaA2-ParE2 heterohexadecamer remains unclear (28). In contrast to PaaA2 
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and ParE2, very little is known about the regulator PaaR2. Previously, Hallez and colleagues 

have identified PaaR2 as a putative transcriptional regulator containing features typical of the 

DicA transcriptional repressor family and a potential role in transcription regulation of the 

three-component paaR2-paaA2-parE2 TA module was proposed (26). In this paper, we 

demonstrate that, in solution, PaaR2 assembles into an octamer with a non-spherical shape 

in a concentration-dependent manner. Based on a unifying thermodynamic model (which was 

constructed from spectroscopic and calorimetric thermal unfolding data), the octamer 

assembly seems to occur via a hierarchical pathway consisting of 5 species. Importantly, the 

proposed model suggests that, under physiological conditions, the predominant PaaR2 

species in solution is a dimer that may relatively quickly oligomerize into an octamer 

depending on local conditions. Finally, we discuss that these findings may be relevant to 

understand the function of PaaR2 as a transcriptional regulator. 

 

Materials and methods 

Cloning, mutagenesis and transformation 

The genes coding for PaaR2, PaaA2 and ParE2 were amplified from a purified colony of E. coli 

MC1061 carrying a pET15b expression plasmid with the paaR2-paaA2-parE2 operon. The 

polyhistidine-tag was placed C-terminally on PaaR2 using primers PaaR2_1 and PaaR2_2. 

Primers PaaR2_3 and PaaR2_4 were used for paaA2-parE2. The sequences of the primers are 

shown in Supporting Table S1. The two gene amplifications were combined using an overlap PCR. 

Using In-Fusion® HD cloning, the paaR2-paaA2-parE2 operon was then cloned in a pET15b plasmid 

which had been digested with BamHI and NcoI. CaCl2-competent BL21 (DE3) E. coli cells were 

transformed with pET15b-PaaR2His-PaaA2-ParE2. The cysteine at position 120 of PaaR2 in 

the pET15b-PaaR2His-PaaA2-ParE2 plasmid was mutated to a serine using the Phusion site-

directed mutagenesis kit (Thermo Fisher Scientific) and primers PaaR2HisC120SFwd and 

PaaR2HisC120SRev (Supporting Table S1). The mutation was confirmed by sequencing, after 

which the resulting plasmid, pET15bR2HisC120SA2E2, was transformed into expression strain 

E. coli BL21 (DE3) using the CaCl2 method. 

 

Expression and purification  

A colony of BL21 (DE3) (pET15bR2HisC120SA2E2) was grown overnight at 37°C in 300 mL LB 

medium supplemented with ampicillin (100 μg mL-1). The overnight culture was diluted fifty 
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times in twelve 1 L flasks of LB and grown at 37°C while shaking. When the OD reached 0.6-

0.8, the cells were induced with 1 mM isopropyl β-D-thiogalactopyranoside (IPTG). After 

further incubation for 4 hours at 37°C while shaking, the cells were spun down for 13 minutes 

using the JLA 8.1000 rotor at 5000 rpm (6238 g) and 4°C. Each pellet was resuspended in lysis 

buffer (20 mM Tris-HCl pH 7.3, 500 mM NaCl, 20 mM MgCl2, 0.1 mg mL-1 4-(2-Aminoethyl) 

benzenesulfonyl fluoride hydrochloride (AEBSF), 1 μg mL-1 leupeptine, 50 μg mL-1 DNase I). 

This suspension was then left to stir for 30 minutes at 4°C. Lysis occurred by sonicating three 

times for 1 minute. The lysate was centrifuged for 45 minutes using the JA 20 rotor at 18000 

rpm (39191 g) and loaded onto a 5 mL HisTrapTM 
HP Ni2+-Sepharose column (GE Healthcare) 

that had been pre-equilibrated for at least one column volume with buffer A (20 mM Tris-HCl 

pH 7.3, 500 mM NaCl, 5 mM imidazole). After a wash period, buffer B (20 mM Tris-HCl pH 7.3, 

500 mM NaCl, 1 M imidazole) was added to generate a linear gradient of 0 – 1 M imidazole 

over 50 column volumes. The fractions containing the protein of interest, PaaR2, were pooled 

and concentrated to a volume of 2 mL. The Ni-NTA-purified protein was subsequently loaded 

on a Superdex 200 16/90 SEC column (GE Healthcare), which had been washed and pre-

equilibrated with SEC buffer (20 mM Tris-HCl pH 7.3, 500 mM NaCl) for at least one column 

volume. The buffers for the purification of the wild type PaaR2 are the same with the addition 

of 1 mM TCEP. 

 

Electrophoretic mobility shift assays 

Primers were designed, using the DNA sequence of E. coli O157:H7 Str. EDL933, to encompass 

the promoter operator region FL1 and FL2 or a random intergenic region Neg1 and Neg2, 

whilst maintaining a similar GC content and equal length (97 bp). The sequences are given in 

Supporting Table S1. All protein samples were concentrated and dialyzed to 1x PBS pH 8.0 (1 

mM TCEP was added in the case of PaaR2 wild type). Binding reactions were performed by 

adding 1 μL of DNA at a final concentration of 0.25 μM of DNA to 9 μL of a protein solution. 

The mixture was left to incubate for 30 minutes at 20°C. After addition of 2 μL of retardation 

dye (25% ficoll, 0.1% xylenecyanol, 0.1% bromophenol blue), the samples were loaded in a 

6% polyacrylamide gel. The electrophoresis was performed for 10 minutes at 180 V until the 

two dyes were clearly separated. Consequently, the voltage was diminished to 120 V for 40 

minutes. The gel was then stained using EtBr. 
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Native mass spectrometry  

Because of the changing oligomeric states of the protein, in all experiments the protein 

concentrations are expressed in molar concentrations of monomer equivalents. A sample of 

PaaR2 was prepared at different concentrations (from 65 to 0.33 μM) by overnight dialysis 

against 150 mM ammonium acetate at pH 7.3. Using in-house prepared, gold-coated 

borosilicate glass needles, the sample was introduced into the vacuum of the mass 

spectrometer via nano-electrospray ionization with a voltage of +1.6 kV. Spectra were 

recorded on a traveling wave ion mobility quadrupole time-of-flight instrument (Synapt G2 

HDMS, Waters). Critical voltages throughout the instrument were 40 V for the sampling cone, 

1 V for the extraction cone, 10 V trap collision voltage, 45 V for the trap DC bias and 0.5 V 

transfer collision voltage. Pressures throughout the instrument were 6 mbar, 4.3 E-2 mbar 3 

mbar and 3.9 E-2 mbar for the Source, Trap collision cell, ion mobility cell, transfer collision 

cell, respectively. Collision cross sections (CCS) were obtained after calibration with proteins 

of known CCS as reported elsewhere (30): concanavalin A, alcohol dehydrogenase, glutamate 

dehydrogenase and avidin. Mass spectrometry and ion mobility data were analyzed using 

MassLynx 4.1 and Driftscope 2.3 (Waters). Experimental values for the CCS of PaaR2 were 

compared to theoretical models. The model for spherical growth was estimated based on the 

relevant equations by assuming a typical density of 0.44 Da per Å3, as previously reported 

elsewhere (31, 32). Based on the obtained volume, a dense sphere was assumed, and the 

radius calculated. CCS were subsequently determined by calculating the cross section of a 

sphere where the final radius was rPaaR2+rN2 to compensate for the use of N2 as the drift gas. 

The isotropic model was generated using the obtained experimental CCS of the dimer as this 

appeared to be the smallest stable building block of PaaR2 and scaled according to 

Ω=Ωdimer*N2/3, with N the number of building blocks present in the oligomer. 

 

Size exclusion chromatography and multi-angle light scattering  

Analytical SEC was performed using high performance liquid chromatography (HPLC) on a 

high molecular weight Shodex KW404-4F column (Showa Denko K.K.) pre-equilibrated for at 

least one column volume with a high salt running buffer (20 mM Tris-HCl pH 7.3, 500 mM 

NaCl). Samples were concentrated to 104 μM and 50 μL was injected. Every buffer was filtered 

three times through a 0.1 μm filter (Sartorius). 

The MALLS set-up consisted of an on-line UV detector (Shimadzu), a DAWN® HELEOS® MALLS 
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detector (Wyatt Technology) and an Optilab® T-rEX refractive index detector (Wyatt 

Technology) attached to the Shodex KW404-4F column. Before sample injection, the inter-

detector delay volumes were determined using a monomeric sample of BSA at 2.0 mg mL-1 

(Pierce, Thermo Fisher scientific), which was buffer exchanged to the running buffer. 

Molecular weight calculations were performed using the ASTRA V software. 

 

Dynamic Light Scattering 

Dynamic light scattering was performed on a DynaPro Nanostar (Wyatt Technology). The 

sample was spun down for 15 minutes at 16200 g and degassed for 10 minutes. The curves 

were recorded in a plastic micro-cuvette at room temperature in 1x PBS (137 mM NaCl, 2.7 

mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4) using a protein concentration of 26 μM. 

For each measurement ten acquisitions were taken (with 10 seconds for each acquisition). 

Thermal unfolding experiments were performed by increasing the temperature from 25°C to 

80°C at a constant ramping speed of 1°C min-1. Reversibility of the unfolding was checked by 

measuring the sample again after doing thermal unfolding. The DLS data were analyzed using 

the Dynamics V7 software package. 

 

Small-angle X-ray scattering 

The small-angle X-ray scattering (SAXS) curves were recorded at the SOLEIL synchrotron on 

the SWING beam line in Gif-sur-Yvette, France. PaaR2 was used at a concentration of 541 μM 

and the sample was run in HPLC mode at 15°C using the running buffer 20 mM Tris-HCl pH 

7.3, 500 mM NaCl. The buffer scattering curves were averaged and subtracted from the 

sample scattering curves using the in-house Foxtrot platform (SWING beamline). The data 

were further processed using PRIMUS from the ATSAS software package (see Supporting 

Table S2) (33, 34). Different techniques were used to calculate the mass. The first method 

used is based on the Guinier analysis and uses equation 1 (35): 

 
!"#$ =	

'()*(,). /012

3
  (1) 

With Iexp(0) and c respectively the extrapolated scattering intensity at zero angle and the 

concentration at the tip of the peak in the chromatogram corresponding to PaaR2 (36). Using 

GNOM, a P(r) (particle distance distribution) function was created which also gave an 
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estimate of RG but on the basis of this P(r) function (37). With the QR method (38), the mass 

was calculated using the following formula: 

 
!4 =	

56

,. /70/
 (2) 

In which 89 =	:;
</>? . VC is the ratio of the particle’s I(0) to its total scattered intensity. 

Furthermore, using SAXS MoW, a molecular weight could be estimated using the P(r) function 

(39). Finally, with the Porod-Debye plot in scatter, the Porod volume was calculated (40, 41). 

When this volume is divided by 1.7, an approximation for the molecular weight is obtained 

(33). 

 

CD spectroscopy 

Far-UV CD spectra were recorded using a Jasco J-715 spectropolarimeter. The protein sample 

was spun down for 15 minutes at 16200 g and degassed for 10 minutes. Circular dichroism 

spectra were measured between 200-250 nm, with a scan rate of 50 nm min-1, bandwidth of 

1.0 nm and a resolution of 0.5 nm. Five accumulations were taken in PBS buffer with samples 

of PaaR2 at 1.3 and 13 μM concentrations placed in a 0.5 and 0.1 cm cuvettes, respectively. 

Thermal unfolding experiments were performed by increasing the temperature from 15°C to 

95°C using different heating rates 1, 2 or 4 °C/min. Thermal unfolding appeared independent 

of heating rate and showed complete recovery of a signal after renaturation suggesting that 

the process is not kinetically limited and appears to be reversible. For further analysis of 

thermal unfolding scans with 1 °C/min were used measured at 222 nm. The mean residue 

ellipticity ([@] in deg.cm2.dmol-1) was calculated from the raw CD data by normalizing for the 

concentration of protein and the number of residues: 

 

 
[B] = 	

B	.!!

D	. E	. F
 (3) 

With MM, n, C and l representing the molecular weight (Da), the number of amino acids, the 

protein concentration (mg mL-1) and the length of the cuvette (cm). Secondary structure 

content was estimated using BeStSEL(42, 43) and the programs provided on DichroWeb (44): 

K2D (45), CDSSTR (46) and Contin-LL (47) and compared to the sequence-derived secondary 

structure predictions using JPRED (48) and PSIPRED (49). 
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Fluorimetry 

Intrinsic protein fluorescence emission spectra were measured between 300 and 420 nm 

using the Perkin Elmer LS 50 spectrofluorimeter (Perkin Elmer, USA) and an excitation 

wavelength of 290 nm. To avoid signal overload, protein samples at 13 and 1.3 μM were 

measured in 0.3 cm and 1 cm cuvettes, respectively. Emission spectra were recorded as a 

function of temperature in the 15-85 °C interval with the applied heating rate being 1 °C min-

1. For the analysis of thermal unfolding, fluorescence intensity at 355 nm (at the tryptophan 

emission maximum) as a function of temperature was used. 

Differential scanning calorimetry 

The calorimetric scans were performed using a MicroCal VP-DSC high-sensitivity differential 

scanning micro-calorimeter. The samples were spun down at 16200 g and degassed for 10 

min. Thermal unfolding was performed with two different scanning rates: 1.5 and 1 °C min-1, 

yielding very similar unfolding profiles. The reversibility of the thermal unfolding (checked by 

reheating the solution in the calorimeter cell after cooling from the up-scan run) was at least 

95%. The sample consisted of PaaR2 at 23 μM in 1x PBS. The measured signal was corrected 

for the buffer contribution and normalized per mole of protein in the measuring cell to obtain 

the partial molar heat capacity (GH,<) of protein as a function of temperature. For further 

analysis cp,2 was expressed as the excess heat capacity,	∆KH = GH,< − GH,MNO , where GH,MNO 

represents an intrinsic heat capacity of protein. The total intrinsic heat capacity is the sum of 

the intrinsic heat capacities of the protein in different states: GH,MNO = ∑QMGH,M ,	where QM  

represents a molar fraction of the protein in state i. In the measured temperature interval, 

GH,MNO was approximated by the second order polynomial on R and fitted to the pre- and post- 

transition parts of the experimental GH,<. 
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Results and discussion 

PaaR2 can be produced in an active form 

Initially we expressed wild-type PaaR2 with a His-tag placed at its N-terminus. This construct, 

however, led to a protein preparation that when eluted from the Ni-NTA column was highly 

aggregated and carried a DNA contamination that could not be removed by additional 

chromatographic steps or by the addition of DNase K. We then designed a second construct 

where the histidine tag was moved to the C-terminus. No DNA contamination was observed 

here after Ni-NTA purification, but the protein showed a tendency towards aggregation, 

which was largely but not fully prevented by including 1 mM TCEP to all buffers. We reasoned 

that this could be caused by the presence of the single cysteine at position 120 and therefore 

constructed the mutant Cys120Ser (PaaR2C120S).  

PaaR2C120S can be produced with significantly higher yields and, in contrast to wild-type 

PaaR2, does not aggregate over time. Both proteins migrate as a single band on SDS-PAGE 

(Supporting Figure S1a), show an identical CD spectrum (Supporting Figure S1b) when freshly 

purified and bind to the 97 bp intergenic region preceding the paaR2-paaA2-parE2 operon 

with essentially the same affinity while no binding is detected for a random DNA fragment of 

the same length and with the same % GC contents (Figure 1). For these reasons, we chose to 

continue with PaaR2C120S for most of our experiments. 

 

PaaR2 is a hierarchically organized octamer in solution 

The molecular weight of PaaR2C120S, as determined by mass spectrometry is 15295.4 ± 2.0 

Da, in close agreement with the theoretical molecular weight of 15296.3 Da. To assess the 

oligomeric state of PaaR2C120S, its absolute molecular weight was determined using SEC-

MALLS. PaaR2C120S migrates as a single peak on a Shodex KW404-4F column in high salt 

conditions when injected at a concentration of 105 μM. The MALLS-estimated molecular 

weight of the corresponding molecular species (at an elution volume of 3.36 mL) is 126 kDa, 

corresponding closely to the theoretical mass of 122.37 kDa expected for an octamer (Figure 

2a). It should be noted at this point that in SEC the C120S mutant and freshly prepared wild-

type PaaR2 elute at essentially the same volume, indicating that the Cys120Ser mutation does 

not affect the oligomeric state of the protein (Supporting Figure S1c). 

The octameric assembly of PaaR2C120S and its potential concentration dependency were 

further assessed by native mass spectrometry. We used protein concentrations over two 
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orders of magnitude ranging from 0.33 to 65 μM (Figures 2b and c). At concentrations over 

3.3 μM a particle corresponding to an octamer was shown to be the most prevalent species 

(Figure 2b; MWexp = 122.780 kDa vs MWtheory = 122.368 kDa), while lower concentrations were 

hallmarked by a mixture of PaaR2C120S monomers, dimers, and tetramers (Figure 2c). 

Additionally, the concentration analysis shows that the octamer to dimer ratio is rapidly 

increasing with concentration. To address the situation in solution, we performed additional 

dilution experiments using SEC. At 9 μM concentration, the sample elutes as an octamer. By 

decreasing the concentration to 0.5 μM, we observe that the elution volume starts to show a 

slight shift towards a larger elution volume indicating a dynamic equilibrium between 

octamer and oligomers of lower molecular weight (Supporting Figure S2a). The native MS also 

reveals that, once formed, the PaaR2C120S octamer is a rather stable and compact particle. 

At a concentration of 65 μM, the mass spectrum of octameric PaaR2C120S shows a single, 

compact charge state distribution, which is characteristic for a well-folded protein complex, 

with little to no significant structure disorder (50, 51). 

The oligomeric state of PaaR2C120S in solution was also investigated using SAXS (Supporting 

Figure S3a and Supporting Table S2). PaaR2C120S was injected for HPLC-SAXS at a 

concentration of 541 μM, and the analysis was performed on scattering data from the top of 

the peak (127 μM). The RG/I(0) plot (Supporting Figure S3b) yields a very stable RG as a 

function of the frame number which supports the above-mentioned data and suggests that 

the collected SAXS curves are characteristic of a single type of particle. Guinier analysis 

(Supporting Figure S3c) reveals that the particle has an RG of around 51 Å, which is consistent 

with RG-values obtained from p(r) and Guinier peak analysis (Supporting Table S2). 

Additionally, molecular mass estimations based on I(0) extrapolation and the Porod volume 

are consistent with a PaaR2C120S octamer and are in agreement with the results from SEC-

MALS and native MS. 

 

The PaaR2 octamer has a compact non-spherical structure 

Further analysis of the HPLC-SAXS data indicates that the PaaR2C120S octamer is compact. 

The normalised Kratky plot is characteristic of a well-folded particle with a low degree of 

flexibility (Figure 3a). Moreover, the Porod-Debye plot illustrates that a clear Porod plateau 

is reached and the Porod exponent is estimated at 3.9, which is consistent with a high level 

of compactness (Supporting Figure S3d). Together with the native MS data mentioned earlier, 
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these findings support that the PaaR2C120S octamer is a stable, compact particle displaying 

very little flexibility. 

More insights in the overall architecture of the PaaR2C120S octamer can be obtained from 

the RG power law for protein oligomers (52). However, it seems that the PaaR2 octamer does 

not obey this power law suggesting that the particle has a peculiar architecture. Particles 

typically deviating from the RG power law for protein oligomers are either very elongated or 

display a dihedral or cyclic symmetry. While the RG power law was derived for hexamers with 

dihedral and cyclic symmetries (52), this remains unexplored for octamers with this type of 

symmetry. Based on the P(r) function, it is clear that the PaaR2C120S octamer is not elongated 

(Figure 3b). This can be quantified by the elongation ratio (E.R.) proposed by Putnam (53). 

Typically, symmetric objects have an E.R. around 1.0, while very extended particles possess 

very high E.R. values (10 or higher). The PaaR2 octamer has an E.R. of 1.3, which is reminiscent 

of a symmetric particle but not consistent with a perfect sphere (E.R. = 0.94). For the PaaR2 

octamer, the power law exponent is caculated to be 0.467, which deviates substantially from 

the exponent generally found for protein monomers and oligomers (0.40). This would point 

towards an octamer with a cyclic symmetry given that, for a given number of residues, cyclic 

oligomers tend to have larger RG values than other symmetries (52). 

Additional support that PaaR2C120S has a symmetric, non-spherical shape comes from 

analytical SEC and DLS data and their respective comparison with the SEC-MALLS and SAXS 

data. The analytical SEC profile was measured at concentrations that correspond to a 

population consisting of an octameric complex (104 μM injected concentration). The 

molecular mass extrapolated from the elution volume of PaaR2C120S on the Shodex KW404-

4F column is significantly higher (215 kDa) than that obtained from SEC-MALLS (110 to 126 

kDa) (Figure 2a). Importantly, it should be noted that SEC-MALLS provides an absolute 

measurement of the molecular weight and is not influenced by the shape of the molecule. 

Therefore, this discrepancy between the molecular weight estimates derived from analytical 

SEC and SEC-MALLS could be caused by the PaaR2C120S octamer possessing a non-spherical 

shape. This is further advocated by a comparison of the radius of gyration (RG; obtained via 

SAXS) of PaaR2C120S and its hydrodynamic radius (RH; determined by DLS and analytical SEC). 

The RH of PaaR2C120S as calculated from the SEC data is 55 Å. This is consistent with DLS 

measurements at a concentration of 29 μM, which provide an RH estimate of 54 Å (Figure 2c). 

The RG/RH ratio is 0.775 and 1.1 for perfect spheres and anisometric polymers, respectively. 
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For PaaR2C120S, the RG/RH ratio is 0.94. Together, these data indicate that the PaaR2C120S 

octamer is compact and possesses a symmetric, non-spherical shape. This peculiar 

architecture most likely explains why there is such a discrepancy between the different 

methods for SAXS-based molecular mass determination (Supporting Table S2) (54). 

Finally, we turned to ion mobility-mass spectrometry to gain additional structural information 

about the global shape of the molecule. Ion mobility in conjunction with mass spectrometry 

allows for separation of conformations based on mass, charge and global shape, by separating 

ions in a gas filled tube under the influence of an electric field (55). For PaaR2C120S we 

obtained collision cross sections (CCS) of 2472 Å2, 3876 Å2 and 6319 Å2 for the dimer, tetramer 

and octamer, respectively. It is possible to predict the collision cross sections for different 

shapes of a molecule as a function of increasing size. Figure 3d shows the obtained 

experimental CCS values for PaaR2C120S in relation to a linear, spherical and isotropic (equal 

in all directions) growth models. It becomes apparent that both the linear and spherical 

models do not match the observed experimental CCS values, but that PaaR2C120S 

oligomerization follows isotropic growth. These results further reinforce the conclusion that 

PaaR2C120S is a symmetric non-spherical compact particle with little flexibility. 

 

Thermal unfolding of PaaR2 is reversible and displays several transitions suggesting a complex 

unfolding mechanism 

Circular dichrosim (CD) spectra of both wild-type PaaR2 and PaaR2C120S bear a shape 

characteristic of a-helical proteins with minima at 208 and 222 nm (Figure 4a, Supporting 

Figure S1b). Deconvolution of the CD spectrum using different methods suggests an α-helical 

content of about 67% (Table 1). This compares reasonably well to values of α-helical content 

determined from amino acid sequence-based secondary structure prediction (JPRED 55% and 

PSIPRED 56% - Table 1 and Supporting Figure S4). In addition, these algorithms predict that 

the protein contains an N-terminal likely helix-turn-helix motif and a C-terminal helix 

predicted to form a coiled coil. 

Increasing the temperature leads to the unfolding of the protein, with CD spectra at 92°C 

indicating that the majority of secondary structure is random-coil and that two thirds of the 

a-helical structure are lost (Figure 4a). Cooling the sample back to 25°C leads to complete 

recovery of signal, suggesting a reversible unfolding/refolding process for both wild-type and 

mutant PaaR2 (Figure 4a, Supporting Figure S5). This was also confirmed for PaaR2C120S 
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while monitoring DLS unfolding (Supporting Figure S6). As the temperature is increased (until 

85°C), a homogeneous population of particles showing a larger decay time from the 

autocorrelation curve is observed. When the sample is cooled down, even after several 

heating cycles, the autocorrelation curve at room temperature again corresponds to the 

initial curve, indicating a reversible transition. Following the change in ellipticity as a function 

of temperature and protein concentration reveals three transitions, of which the first and 

third are concentration-dependent (Figure 4b). The second, sharper, transition at around 

67°C appears to be concentration-independent. 

Given the complexity of the process, we gathered additional information by following the 

tryptophan fluorescence as a function of temperature. Sequence analysis reveals that one 

tryptophan residue is located in the predicted helix-turn-helix domain, while the other 

residue is part of the C-terminal coiled coil (Supporting Figure S4). The native protein shows 

a fluorescence spectrum with an emission maximum at 345 nm (Figure 4c). Thermal unfolding 

leads to a strong decrease of the fluorescence emission intensity and a red-shift of the 

emission maximum (Figure 4c). Both observations indicate exposure of tryptophan residues 

to a more polar surrounding. Again, refolding leads to the recovery of the fluorescence 

emission spectrum, suggesting reversibility of the unfolding/refolding process. Change of the 

emission intensity as a function of temperature and protein concentration also suggests a 

multi-step process, but with some differences with respect to what was observed in CD. In 

fluorescence, an additional low-temperature concentration-dependent transition is observed 

while the last transition corresponds to the second concentration-independent transition 

observed in CD (Figure 4d). 

These observations suggest that the native octamer dissociates without any loss of secondary 

structure but with some changes in the polarity of tryptophan surrounding. This is followed 

by the second dissociation event observed by both CD and fluorescence. A third transition 

recorded by CD and fluorescence is the most cooperative and does not involve a change of 

oligomeric state (concentration independent). The final transition again involves dissociation 

and slight loss of secondary structure, but no further change in the fluorescence signal. 

 

A global thermodynamic model describes a five-state unfolding process 

Unfolding of PaaR2C120S was further followed using differential scanning calorimetry (DSC) 

(Figure 5) and the DSC data were, together with the CD and fluorescence data, integrated into 
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a model of the reversible unfolding of PaaR2C120S. Based on the available information, the 

simplest model for the thermal unfolding of PaaR2C120S that best describes the data from 

CD, fluorescence and DSC seems to involve four distinct transitions as shown schematically in 

Figure 5A. Additional models of varying complexity were also tested, however none of them 

can adequately describe the FL, CD and DSC simultaneously (Supporting Figure S7, Supporting 

Table S5). A detailed explanation on model analysis and model selection is described in the 

Supporting methods section. Briefly, for each transition i (equations 4-6 (see Supporting 

Materials and Methods) the model parameters ΔTM, ΔUM  and ΔKH,M  (standard Gibbs free 

energy, enthalpy and heat capacity) given per mole of monomer at 25°C were first obtained 

by fitting the model function (equations 7 and 8 (see Supporting Materials and Methods)) to 

each dataset (CD, fluorescence and DSC) separately, providing reasonable initial estimates of 

the model parameters. However, given the number of parameters required to describe this 

complex unfolding process, some of them are strongly correlated. This can be partially 

avoided by fitting the model function to all data simultaneously (equation 9 (see Supporting 

Materials and Methods), Supporting Figure S8). The final set of thermodynamic parameters 

from the global fitting of FL, CD and DSC data is shown in Figure 6b and Supporting Table S3. 

The validity and robustness of model parameters was further assessed using Monte Carlo 

error analysis providing estimated parameter distributions and correlations (Supporting 

Figure S9 and Supporting Tables S3 and S4).  It should be noted that the global fit shows some 

systematic discrepancies and that goodness-of-fit statistics indicate that the model is not 

perfect (Supporting Table S5). This is likely due to certain simplifications aimed to reduce the 

number of fitting parameters (further discussed in Supporting Information). 

The DSC model function (eq. 8 (see Supporting Materials and Methods)) provides a good 

description of the DSC experiment (Figure 5) which, unlike spectroscopic experiments, detects 

all unfolding transitions. The first endothermic peak involves transition of the octamer to 

tetramer, dimer and dimer intermediate, while the second peak at high temperature 

corresponds to transition of dimer intermediate into unfolded monomer (Figure 5b). At 25°C 

the dissociation of the octamer (P8) to the tetramer (P4) and then to the dimer (P2) does not 

involve significant changes in enthalpy (Figure 6b), likely because exposure of polar and apolar 

surfaces to water have opposing effects on the enthalpy change, resulting in an overall 

enthalpy compensation. On the other hand, conversion of the folded dimer (P2) into a largely 

unfolded dimer intermediate (I2) is enthalpically unfavorable and results in a species with little 
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native secondary structure. This dimeric intermediate with solvent exposed tryptophan 

residues dissociates into a final monomeric unfolded form, a process which is also associated 

by a positive enthalpy change. The total enthalpy change for unfolding is larger than expected 

for an average globular protein from the dataset of Robertson and Murphy (145 vs. 90 kcal 

mol-1 at the dataset reference temperature of 60 °C) (56). The Robertson and Murphy dataset 

deals mainly with monomeric proteins and therefore a larger enthalpy change might reflect 

favorable interactions between PaaR2C120S monomers in the octamer. The estimated heat 

capacity contributions of each unfolding step are subjected to considerable uncertainties due 

to strong parameter correlations (in Supporting Table S4) (57). However, a reasonable 

estimate can be obtained for the overall heat capacity change for the total unfolding. This 

overall heat capacity change is positive (indicating a general exposure of apolar surface upon 

unfolding) but smaller in value compared to the average for globular proteins in the 

Robertson and Murphy dataset (0.5 vs. 1.7 kcal mol-1K-1). This can be explained through the 

compensating effect of heat capacity contributions: exposure of polar surfaces, which 

probably accompanies oligomer dissociation, results in negative heat capacity changes while 

the change is positive for the exposure of apolar surface during the later steps of unfolding 

(58). 

 

A stability phase diagram provides insights into the behavior of PaaR2 under physiological 

conditions and its putative role as a transcriptional regulator  

Based on the model parameters, we calculated which species is predominant as a function of 

protein concentration and temperature resulting in a protein stability phase diagram 

presented on Figure 6c. Regions of the phase diagram are colored according to which 

molecular species has the highest molar fraction at a given temperature and protein 

concentration (e.g. a region with 40% tetramer, and 30% of each octamer and dimer has an 

orange color). Below 60°C, the protein exists in a wide concentration range in an octamer-

tetramer-dimer equilibrium, with dimer as the predominant species. Although native mass 

measurements are not expected to correlate quantitatively with a situation in solution, we 

observe a reasonable agreement with the protein stability phase diagram. The octameric 

population is dominant at 10 μM and above but decreases rapidly at lower concentrations. 

Furthermore, the SEC dilution experiment shows that samples at 10 μM concentration 

contain only octamers, while samples at 0.5 μM concentration are a mixture of oligomers 
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(octamer, tetramer, dimer), in good agreement with the model-predicted species populations 

(Supporting Figure S2). 

Of interest is also the observation that the octamer dissociates to dimer with decreasing 

temperature (Figure 6b). This is reminiscent of the cold denaturation phenomenon observed 

for some monomeric proteins and more commonly for multimeric proteins and 

supramolecular structures (59). It appears that the positive heat capacity values combined 

with a relatively low enthalpy change for the first two transitions (P8>P4>P2, ΔH = 2 kcal/mol, 

ΔcP>0) leads to dissociation of the octamer with decreasing temperature. The physiological 

concentration of the PaaR2 protein is not known, however a recent absolute quantification 

of E. coli proteins reports a median value of 67 protein copies per cell (around 10-7 M) (60). 

At physiological temperature 37 °C and assuming 100 PaaR2 copies in the cell this corresponds 

to an area of the phase diagram (indicated in Figure 6c) with highest dimer fraction but also 

a significant fraction of tetramer and octamer (the corresponding fractions are:	QV<=0.5, 

QVW=0.4, QVX=0.1). In this area, a shift in the protein concentration by an order of magnitude 

results in a complete redistribution of protein species which may be relevant for protein 

function. Given that the protein should bind to the operator DNA sequence, the binding could 

promote the oligomerization due to the increase in local protein concentration (61). It has 

been shown that DNA binding by monomeric transcription factors and subsequent 

oligomerization offers a kinetic discrimination of specific DNA sites in the large pool of 

nonspecific DNA (62). 

 

Conclusion 

A biophysical analysis through a combination of SAXS, native mass spectrometry and SEC-

MALLS has shown that the PaaR2 regulator from the paaR2-paaA2-parE2 operon in E. coli 

O157:H7 forms a complex consisting of eight subunits in solution. This complex falls apart in 

populations consisting predominantly of a tetramer and finally a dimer at lower 

concentrations, suggesting that this is the pathway in which the octamer is built. This 

hierarchical structure is corroborated by a complex five-state thermal unfolding pathway that 

involves monomer, dimer, tetramer and octamer species of variable secondary structure 

contents. Although there is no sequence similarity, this architecture is reminiscent to that of 

the Leucine Responsive Protein family of transcription regulators. 
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Table 1. Analysis of secondary structure content of PaaR2 determined by CD spectroscopy 

and amino acid sequence analysis. 

Analysis α (%) β (%) coil (%) NRMSD 

K2D 68.0 4.0 28.0 0.069 

Contin-LL 67.1 4.3 28.3 0.344 

CDSSTR 68.6 10.8 20.6 0.004 

BeStSel 62.6 0.0 37.3 0.004 

Average 66.6 4.8 28.6 - 

JPRED 54.6 0.0 45.4 - 

PSIPRED 57.6 0.0 42.4 - 

 

 

 



 25 

Figures 

 

Figure 1. EMSA binding studies of PaaR2. EMSA assays were performed in 1x PBS (1 mM TCEP was added for 

wild-type PaaR2). On top of each lane, the protein concentration is given in µM while the DNA concentration is 

fixed to 0.25 µM. Free DNA is labeled F while B corresponds to the bound species and W to the bottom of the 

wells. (a) Titration of wild-type PaaR2 to the putative operator region. (b) Identical titration of the Paar2C120S 

mutant to the same DNA fragment. (c) Titration of Paar2C120S to a control DNA fragment of the same length 

and with the same GC contents as the operator fragment. Both wild-type and mutant PaaR2 start to show 

binding from 2 µM (monomer equivalent concentration) onwards while no binding is observed for the control 

segment over the full concentration range. 
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Figure 2. Oligomeric composition of PaaR2. (a) SEC-MALLS profile of PaaR2. SEC measurements were performed 

on a Shodex KW404-4F column (104 µM in 20 mM Tris-HCl pH 7.3, 500 mM NaCl). The elution profile of PaaR2 

is shown in blue while the molecular weight curve determined by MALLS is shown in orange. The inset shows 

the molecular weight estimation using the elution volumes and molecular weights of the Bio-Rad Size Exclusion 

standard, from which the molecular weights of bovine g-globulin (158 kDa), chicken ovalbumin (44 kDa) and 

horse myoglobin (17 kDa) are within the linear range of the column and indicated on the figure (white 

diamonds). The elution volume of PaaR2 was plotted on this curve (blue diamond), leading to a MW estimate of 

215 kDa. (b) Native mass spectra for PaaR2 at three different concentrations (65 μM, 6.5 μM and 0.65 μM). 

Peaks corresponding to dimer and octamer are indicated respectively in green and blue. (c) Concentration-

dependent species distribution as determined by native mass spectrometry. At high concentrations, the octamer 

is dominant while below 2 μM the dimer becomes the dominant species. 



 27 

 

Figure 3. Non-spherical behavior of PaaR2. (a) Kratky plot of the SAXS curve for PaaR2 (black). As a reference, 

the Kratky plots from Tau (IDP) and BSA (spherical protein) (both in grey) are also given. (b) Distance distribution 

function (P(r)) at the maximum dimension value (Dmax) of 175 Å. (c) DLS autocorrelation curve of PaaR2 at room 

temperature (black). The regularization fit is shown in grey. The inset shows the regularization graph in mass 

percentage for the native protein prior to unfolding. The values for RH and the % of polydispersity of the protein 

at room temperature are 5.3 nm and 14.8% respectively. (d) Experimental collision cross sections (CCS) obtained 

for the PaaR2 dimer, tetramer and octamer (black diamonds) in relation the theoretical models of a linear 

(dotted line), isotropic (black) or spherical (gray) growth model. 
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Figure 4. Thermal unfolding followed by spectroscopic methods. (a) Circular dichroism spectra of PaaR2 at 13 

μM in PBS buffer. The protein has a characteristic a-helical CD spectrum at 25 °C. Around two thirds of native 

secondary structure are lost upon increasing the temperature to 92 °C, which is completely recovered after 

cooling back to 25°C. (b) Normalized ellipticity measured at 222 nm as a function of temperature (dots) and fits 

of the model function to the CD data (solid lines). Melting curves for two protein concentrations (13 and 1.3 μM, 

dark gray and light gray) are not identical indicating a change in the oligomerization state.  (c) Tryptophan 

fluorescence of PaaR2 at 13 μM in PBS buffer. A loss of intensity and red-shift of emission maximum is observed 

in heat-unfolded sample (gray curve, 85°C) compared to native protein (black curve, 25°C). (d) Normalized 

tryptophan fluorescence from the emission maximum (355 nm) as a function of temperature (dots) and fits of 

the model function to the fluorescence (solid line). 
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Figure 5. Thermal unfolding followed by differential scanning calorimetry. (a) Excess heat capacity of PaaR2 at 

23 μM in PBS (dots) and fits of the model function (solid line). (b) Speciation diagram corresponding to the DSC 

scan in panel above is based on the best fit model parameters obtained from fitting the model function to DSC 

data. 
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Figure 6. Global model for thermal unfolding of PaaR2. (a) Schematic representation of the five-state 

denaturation mechanism. Transitions that are visible by fluorimetry (FL) or circular dichroism spectroscopy (CD) 

are indicated, while all transitions are detected by DSC. (b) Values of thermodynamic parameters (in kcal mol-1 

at 25 °C) accompanying each sub-process (colored according to the starting state as in panel (a)). Values are 

obtained as average values of the parameter distribution obtained from a global fit of the model functions to 

CD, fluorescence and DSC data. Error bars represent two standard deviations. (c) Phase diagram showing the 

most prevalent protein species as a function of protein concentration (per mole of monomer) and temperature. 

At each T and cTOT the fraction of protein species i was calculated using eqs. 5-7. The black circle lies at 37 °C and 

0.1 μM concentration (100 protein copies in cell), a situation which may be encountered in vivo. 
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Supporting Materials and Methods 

 

Model selection 

 

Different experimental techniques suggested that PaaR2 exists as an octamer in solution and 

that denaturation is a multistate process. This starting point already suggests many possible 

ways on how the denaturation process could proceed. Mass spectrometry identified the 

presence of dimer and tetramer species. Therefore, we decided to include them in the model 

mechanism and disregard some other model mechanisms involving heptamers, pentamers, 

etc. The concentration dependent melting curves further suggest a change in the oligomeric 

states during the melting. With this model-independent information in mind, we developed 8 

models of the PaaR2 denaturation process (listed in Supporting Table S5). For each model the 

best-fit model parameters were obtained by nonlinear-fitting of the merit function (eq. 9) 

using the basin-hopping global optimization algorithm with randomly initiated starting 

parameters (1). The corresponding fits of the model function to the experimental data are 

shown in Figure S7. Correspondence between model function and the data was determined 

using chi-squared statistics (Table S5). To address the question of the model selection the 

Akaike information criterion (AIC) was used, which weights the simplicity of the model with 

the quality of description and chooses a model with the least information loss (2). The relative 

difference in the AIC values for the different models can be used to compute the relative 

likelihood of the models.    

The simplest model, Model 1, involves only three states, a minimum required to describe the 

observed two endothermic DSC peaks. Models 2 and 3 involve four states, but the 

concentration dependence is treated differently (Model 2 involves one concentration-

independent step). These two models show that using four states leads to better description 

of DSC data (Supporting Figures S7 and S8, Supporting Table S5). The shoulder in the first peak 

is now more accurately described, however the temperature dependence of the spectroscopic 

signals is not well captured. In Model 4, the dissociation steps from octamer to dimer are 

treated using the same affinity constant, assuming that the oligomerization is reminiscent of 

the binding to independent sites without any cooperative effects. This reduces the number of 

parameters although the whole transition involves 6 states. Model 5 (the original model) and 

6 differ in the treatment of the last transition step, which is concentration-independent for 

the Model 6. This model captures the CD data well but fails in describing the DSC data. Model 

7 involves an additional transition compared to the original model, but the resulting fit to the 

spectroscopic data is poor. Finally, Model 8 was developed, however the resulting fits are 

unstable and fitting runs into problems due to difficulties in the root-solving procedure. Based 

on low !" values and AIC values (Supporting Table S5), it appears that Model 5 (the one 

presented in our manuscript) is the most probable among candidate models. The large values 

in the difference AIC values, Δ>100, (Δ=AICi - AICmin), suggest that other candidate models are 

very unlikely. In particular, the relative model probabilities for other candidate models are low 

(p>10-7), showing that Model 5 is significantly more probable compared to other models. The 



validity of the model parameters for the selected model have been assessed using Monte 

Carlo error estimation analysis (Supporting Figure S9), showing that the parameters are 

reliable within the presented error margins and are not strongly correlated (Supporting Tables 

S4 and S5).  

 

Nevertheless, the model is not perfect (!" is 4.6 and the model function shows some 

systematic deviations with respect to the data, specially the transition monitored by CD at 350 

K, see Supporting Figure S8). One likely possibility for the observed discrepancy is the rather 

simple treatment of spectroscopic signals. Analysis of the spectroscopic data of protein 

denaturation usually involves normalization of the signal with respect to the spectroscopic 

properties of the initial and final states (#$ , #&) which may be estimated from the pre- and post-

transition baselines (described in eq. 7). This procedure is employed as it reduces the number 

of fitting parameters. The spectroscopic properties #$ and #&  are temperature dependent 

quantities and their temperature dependence can be estimated from the baseline. However, 

when the description of the process involves more than two optically active states, additional 

parameters #' 	are employed, but their temperature-dependence is neglected. This is because 

it is not possible to estimate their temperature dependence from the data and even assuming 

a simple linear temperature dependence would increase the number of fitting parameters 

considerably. Thus, we believe that because the temperature dependencies of the 

spectroscopic properties of the intermediate states were neglected, this leads to systematic 

errors in the normalized spectroscopic data. These errors increase through extrapolation of 

each #$ with temperature, which might explain why at higher temperature the model function 

deviates more from the CD data. Nevertheless, the model appears to give sensible predictions 

as observed by independent experiments using SEC (Supporting Figure S2). 

 

Model analysis of thermal unfolding 

 

Each transition step can be defined by the corresponding equilibrium constant expressed as: 

 )* = ,-./012320-.4 5
*4 ; 	)0 = ,-.001232-./ 5

*/ ; 	)7 = 8-90-.0 ; 	)/

= -:;01232√-90  

(4) 

where ='  represents the molar fractions of the protein in its different states i (=' = >?@AB CDED⁄ ) 

and CDED  is the total protein concentration in monomer equivalents. The total protein 

concentration during the unfolding is constant, therefore: 

 -.4 + -./ + -.0 + -90 + -: = * (5) 

Each ='  in equation 5 can be expressed as a function of the equilibrium constants H', =I and CDED  using equation 4. Next, for a given set of H'  (specified by equation 6 - see below), CDED  

and T, values of =I from equation 5 are calculated using a root solving routine by applying the 



criterion 0 < =I <1. The obtained =I is then used for the calculation of ='  via equation 4. The 

molar fractions ='  change with temperature according to the temperature dependence of the 

corresponding equilibrium constant as defined by the Gibbs-Helmholtz equation and 

Kirchhoff’s law: 

−K2LM)N(2) = ∆RN(2) = 

∆RN,2S T 22SU + ∆VN,2S T* − 22SU + ∆1W,N T2 − 2S − 2LM( 22S)U   (6) 

Thus, at any X and CDED, the adjustable parameters (standard free energy (∆Y',DZ), standard 

enthalpy (∆[',DZ) and standard heat capacity (∆C\,') change (defined at the reference 

temperature XZ=298.15 K) define the equilibrium constant H'. A set of equilibrium constants 

at a given X and CDED  is used for the calculation of the model-dependent molar fractions ='  
using equations 4-6. 

Based on the assumed model mechanism, we express the measured quantity # (ellipticity, 

fluorescence intensity or partial molar enthalpy of the protein ([")) as a sum of contributions #'  each representing the property # of the pure state ]: 
 ^	 = 	_^N -N (7) 

In the case of spectroscopic techniques, the signal can more conveniently be expressed in the 

terms of a normalized signal, ∆# = (# − #$) (#& − #$)` , where #$ and #&  correspond to the 

properties of the initial and final states of a transition and can be estimated from the pre- and 

post-unfolding baselines. The normalized signal can then be expressed as sum ∆# = ∑b' ='  
where b'  represent spectroscopic properties of the pure states ] normalized with respect to 

initial and final state and are treated as model parameters. The DSC signal was expressed as 

partial molar heat capacity of the protein relative to the protein in native state (∆Cc) as 

described above. In that case, the property # from equation 7 is the partial molar enthalpy of 

the protein sample [d" which is the sum of the partial molar enthalpies of all species (expressed 

per mole of monomeric unit) [d" = ∑[d'='. The DSC model function was obtained by taking 

the partial derivative of [d" on temperature at constant pressure to obtain e\," and then 

formally subtracting e\,'fg:  
 ∆1. =_∆VN hi-Ni2 j. (8) 

In equation 8, ∆['  are the standard enthalpies (given per mole of monomeric subunits) 

associated with the transition of the protein from its native octameric state P8 to a given state 

i. After the data have been normalized as described, a single set of parameters can be used to 

describe all experimental CD, fluorescence, and DSC unfolding curves simultaneously. Thus, 



for each dataset given the experimental data k'  (∆# and ∆Cc) measured as a function of 

variables l'  (X and CDED), we compute the sum (m) of residuals with the described model 

functions f (equation 7 and 8) using a set of parameters n: m = ∑(k' − #(l, n))". Finally, the 

sum of residuals m calculated for each dataset were combined into a merit function ℱ that 

was subjected to the minimization algorithm: 

 p = qr:sr:+qtustu +q:srs:sr           (9) 

The residuals from different experimental methods are multiplied by a factor v, such that 

each dataset has approximately the same weight in the fitting. In other words, the factors v 

correct for different number of experimental points in each dataset and for the higher numeric 

values of ∆Cc than ∆#. The applied global fitting procedure provides a much higher number of 

experimental points per fitted parameter as opposed to fitting each set of parameters to the 

individual experiments (3). The merit function ℱ was minimized by modifying the fitting 

parameters using the Powel algorithm (4). The reliability of the estimated model parameters 

was assessed using a Monte Carlo simulation analysis. We generated 250 pseudo-

experimental datasets by adding random errors obtained from a normal distribution. This 

distribution is specified by the mean centred around the values predicted by the best fit model 

function to the original experimental dataset and by the width corresponding to the estimated 

experimental error (w=0.05 for ∆# from CD and fluorescence and w=800 cal mol-1K-1 for DSC). 

For each pseudo experimental dataset (CD, fluorescence, DSC) we obtain a set of parameters 

by minimizing the merit function ℱ (equation 9) (Supporting Figure S8), resulting in the 

distribution of parameter values. This distribution should correspond to a distribution 

obtained by performing a large number of repeated measurements on the same experimental 

system (5). The final set of thermodynamic parameters reported in Figure 6b and Supporting 

Table S3 corresponds to the means and standard deviations of the normal distribution 

function that best-fits the Monte Carlo derived parameter distributions shown in Supporting 

Figure S9. Additionally, such error analysis provides information on the parameter correlations 

showing the extent by which the determination of one parameter determines the value of 

another (shown in Supporting Table S4).  
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Supporting tables 

 

Supporting Table S1. Primers used for cloning and mutagenesis. 

 

Primer Sequence 

PaaR2_1 5’-AGGAGATATACCATGCAAAAAAAAGAAATTCGC-3’ 

PaaR2_2 5’-TCAGTGATGATGATGATGATGGCTGCTGCCGGCGCGGCGGCATTTTTG-3’ 

PaaR2_3 5’-GGCAGCAGCCATCATCATCATCATCACTGAGTTATAAAACCGGAGGAAAC-3’ 

PaaR2_4 5’-GTTAGCAGCCGGATCTTAGGGAAACTGGCGTCTTG-3’ 

PaaR2HisC120SFwd 5’-CGGCGCAAAAAAGCCGCCGCGCT-3’ 

PaaR2HisC120SRev 5’-CAATCCATCTCGCTATGAGATCTTC-3’ 

FL1 5’-ACCTTCCTCGGTTTAGTGTT-3’ 

FL2 5’-GTGGTAATTATCTTTAGTAATC-3’ 

Neg1 5’-GATGAATACCTTGACTGCGA-3’ 

Neg2 5’-GCTTTTGCGCAGAAATTTCG-3’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supporting Table S2. SAXS data collection parameters. Abbreviations used are: IqI = 4x sin 

(θ)/λ, Momentum transfer; I(0), extrapolated scattering intensity at the zero angle; RG, radius 

of gyration calculated using the Guinier approximation (AUTORG) or the indirect Fourier 

transform package GNOM (P(r)); Dmax, maximal particle dimension; VPorod, Porod volume. 

 

Data-collection parameters 

Beam line SEC-SAXS at SWING beamline in SOLEIL 

HPLC column Shodex KW404-4F 

Wavelength (Å) 1.03 

q range (Å-1) 0.0028 - 0.31 

Exposure time (ms) / Dead time (ms) 1500 / 500 

Injected concentration 70 μl at 541 μM 

Temperature (°C) 15 

Secondary standard used Water I(0) 

Structural parameters 

I(0) (cm-1/absorbance) [from Guinier] 0.1401 + 0.0001 

RG (Å) [using AUTORG] 51.28 + 0.06 

I(0) (cm-1/absorbance) [from P(r)] 0.1399 + 0.0001 

RG (Å) [from P(r)] 51.83 + 0.06 

Dmax (Å) 175.03 

VPorod estimate (Å3)1 217997 

Porod exponent1 3.9 

Molecular mass determination 

Using the QR method (kDa)2 200.86 

From Porod Volume (VPorod/1.7) (kDa) 128.23 

SAXS MoW (kDa)2 172.60 

From Guinier analysis (kDa)3 101 

Molecular mass from sequence (kDa) 15.2 (octamer: 122.3) 

Software employed 

Data processing and analysis Foxtrot, DataSW, Primus, Scatter 

1Porod volume and exponent determined using the Porod-Debye plot in Scatter. 
2Determined using a qmax of 0.275 Å-1. 
3Calculated using 0.7425 cm3/g for the partial specific volume and a protein concentration of 

127 μM at the top of the peak.  



Supporting Table S3. Standard thermodynamic parameters derived from global fit. Reported 

values are means and standard deviations obtained from the Monte Carlo parameter 

distributions (Figure S9). The subscript index of a parameter denotes the corresponding 

transition. Values are given at 25 °C in kcal mol-1 and kcal mol-1 K-1 for the changes in heat 

capacity. 

 

Parameter Transition Value Standard error ∆R* z{	P8 ® 
z|	P4 1.28 0.02 

∆V*  3.0 0.9 

∆1W,*  -0.16 0.08 

∆R0 z| P4 ® 
z"	P2 2.7 0.1 

∆V0  -1 2 ∆1W,0  0.98 0.08 ∆R7 z"	P2 ®	z"	I2 7.5 0.1 

∆V7  72.3 0.8 

∆1W,7  -0.54 0.05 

∆R/ z"	I2 ® U 13.0 0.1 

∆V/  65.6 0.9 ∆1W,/  0.17 0.02 

 

 

 

Supporting Table S4. Correlations of parameters derived from Monte Carlo error simulation 

analysis. Only pairs with correlation coefficient > 0.5 are reported.  

 

Parameter 1 Parameter 2 Correlation coefficient 

∆R/ ∆[| 0.75 

∆V* ∆C\," 0.79 

∆V7 ∆C\,z 0.71 

∆1W,7 ∆C\,| 0.53 

 

 

 

 

 

 



 

Supporting Table S5: Candidate models and the corresponding goodness-of-fit statistics. The 

selected model presented in the manuscript is highlighted in bold. 

 

Model Model mechanism !" per degree of 

freedom 

number 

of 

variables 

AIC 

value 

1 z{n{	⇌ 
z"n"	⇌	D 16.6 8 972 

2 z{n{	⇌ 
z"n"	⇌	z" @"	⇌	D	 15.1 13 939 

3 z{n{	⇌ 
z|n|	⇌ 

z"n"	⇌	D 10.4 13 810 

4 z{ 	n{⇌z� 	n�⇌z| 	n|⇌z" 	n"⇌	z" 	@"⇌	D 7.1 13 680 

5 *4.4	⇌ 
*/./ ⇌ 

*0.0	⇌	*0 90	⇌	Ä 4.6 16 531 

6 z{n{	⇌	z|n|	⇌	z"n"	⇌	I ⇌	D 18.0 16 1004 

7 z{ 	n{⇌z| 	n|⇌z" 	n"⇌	z" 	@"⇌	J⇌	D 12.2 20 864 

8 z{n{	⇌	z|n|	⇌ 
z"n"	⇌ 

z" @"	⇌ 
z" É"	⇌ D does not 

converge 

20 / 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supporting figures 

 

 

 

Supporting Figure S1. Characterization of PaaR2C120S and PaaR2 wild type. (a) SDS-

PAGE analysis of purified PaaR2 C120S and PaaR2 wild type. PaaR2 occurs as a single band 

with apparent molecular weight slightly below 15 kDa. PaaR2 wild type shows an 

additional band at 35 kDa because of boiling-induced oligomerization. (b) CD spectra of 

PaaR2 wild type and PaaR2 C120S at 15°C. (c) Analytical SEC of PaaR2 wild type which was 

run immediately after Ni-NTA purification on a BioRad Enrich SEC650 column (20 mM Tris 

pH 7.3, 500 mM NaCl, 1 mM TCEP). The inset shows the molecular weight estimation using 

the elution volumes and molecular weights of the Bio-Rad Size Exclusion standard. The 

molecular weights of bovine g-globulin (158 kDa), chicken ovalbumin (44 kDa) and horse 

myoglobin (17 kDa) are within the linear range of the column and indicated on the figure 

(white diamonds). The elution volume of PaaR2 wild type was plotted on this curve (blue 

diamond), leading to a MW estimate of 188 kDa. 

 

 

 

 

 

 

 



 

 

Supporting Figure S2. Comparison of model predictions with experimental data. The 

normalized analytical SEC profiles (run on a BioRad Enrich SEC 650 column) of 

PaaR2His(C120S) at different concentrations is shown in panel (a). The inset shows the 

relevant concentrations were estimated from the top of the peak 9 μM (dark blue), 0.8 

μM (light blue) and 0.5 μM (cyan). The theoretical elution volumes for octamer, tetramer 

and dimer are indicated in blue, orange and green arrows respectively. The model 

predicted molar fraction as a function of concentration at 25°C is shown in panel (b). 

Model predicted fractions are shown as solid lines (based on the best fit parameters given 

in Table S3). The shaded area represents variation of the model-predicted fraction when 

the best-fit parameters lie within one standard deviation from the mean.  

 



 
Supporting Figure S3. Small-angle X-ray scattering. (a) SAXS curve of PaaR2 after buffer 

subtraction and averaging of individual SAXS curves from the top of the HPLC peak. The 

scattering intensities are indicated in black and the errors are presented in grey. (b) RG/I(0) 

function. Plot of the RG (black) and I(0) (grey) as a function of the scan number. (c) Guinier 

approximation of the SAXS curve (grey). (d) Porod-Debye plot used to calculate the Porod 

volume. 

 

 

 

 



 

 

Supporting Figure S4. Sequence-based secondary structure prediction. The predictions 

by JPRED and PSIPRED are shown graphically. Blue bars represent a-helices, the black line 

represents random coil. The C120S mutation is marked red in the sequence. The HTH-

motif is indicated by the green box, the coiled coil (predicted with the Coiled Coil 

webserver tool) is indicated by the red box. 

 

 

 

 
Supporting Figure S5. Thermal unfolding of PaaR2 wild type and PaaR2C120S followed 

by CD spectroscopy. The superposition of the PaaR2 wild type and PaaR2 C120S thermal 

unfolding is shown. The inset shows the spectra of PaaR2 wild type at 15°C (blue full 

circles), 95°C (light blue full circles) and renatured (blue empty circles). 
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Supporting Figure S6. DLS profile of PaaR2. DLS autocorrelation curves are shown of 

PaaR2 before unfolding (native), at 80°C (unfolded) and after refolding (refolded). The 

regularization fits are shown in grey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

  

  
Figure S7. Experimental and model-derived values calculated using several model 

mechanisms. The experimental data are shown as blue circles while the theoretical fits 

correspond to full lines with grey lines corresponding to a lower concentration. In each 

panel the DSC data are shown on top, fluorescence data in the middle and CD data below. 



 
Supporting Figure S8. An example of global fit for the selected model (Model 5). An 

example of global fit of the model function (eqs. 8 and 9, solid lines) to CD, FL and DSC 

data (circles). Black solid lines correspond to samples at 13 μM, gray solid lines correspond 

to samples at lower (0.13 μM) concentration. 

 

 
Supporting Figure S9. Monte Carlo error simulation analysis. Histograms show 

distributions of parameter values obtained from global fits to 250 pseudo-experimental 

datasets each consisting CD, FL and DSC data. Final set of thermodynamic parameters 

reported in Figure 6b and Supporting Table S3 are means and standard deviations of 

normal distribution function (black curve) that best-fits the Monte Carlo derived 

parameter distributions (bars). 

 


