1,361 research outputs found
The STAR Photon Multiplicity Detector
Details concerning the design, fabrication and performance of STAR Photon
Multiplicity Detector (PMD) are presented. The PMD will cover the forward
region, within the pseudorapidity range 2.3--3.5, behind the forward time
projection chamber. It will measure the spatial distribution of photons in
order to study collective flow, fluctuation and chiral symmetry restoration.Comment: 15 pages, including 11 figures; to appear in a special NIM volume
dedicated to the accelerator and detectors at RHI
Longitudinal Spin Transfer to and Hyperons in Polarized Proton-Proton Collisions at = 200 GeV
The longitudinal spin transfer, , from high energy polarized protons
to and hyperons has been measured for the first time
in proton-proton collisions at with the STAR
detector at RHIC. The measurements cover pseudorapidity, , in the range
and transverse momenta, , up to . The longitudinal spin transfer is found to be for inclusive
and for
inclusive hyperons with and . The dependence on and is presented.Comment: 5 pages, 4 figure
Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons
We report first results from an analysis based on a new multi-hadron
correlation technique, exploring jet-medium interactions and di-jet surface
emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons
are used for triggers to study associated hadron distributions. In contrast
with two- and three-particle correlations with a single trigger with similar
kinematic selections, the associated hadron distribution of both trigger sides
reveals no modification in either relative pseudo-rapidity or relative
azimuthal angle from d+Au to central Au+Au collisions. We determine associated
hadron yields and spectra as well as production rates for such correlated
back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure
Observation of the antimatter helium-4 nucleus
High-energy nuclear collisions create an energy density similar to that of
the universe microseconds after the Big Bang, and in both cases, matter and
antimatter are formed with comparable abundance. However, the relatively
short-lived expansion in nuclear collisions allows antimatter to decouple
quickly from matter, and avoid annihilation. Thus, a high energy accelerator of
heavy nuclei is an efficient means of producing and studying antimatter. The
antimatter helium-4 nucleus (), also known as the anti-{\alpha}
(), consists of two antiprotons and two antineutrons (baryon
number B=-4). It has not been observed previously, although the {\alpha}
particle was identified a century ago by Rutherford and is present in cosmic
radiation at the 10% level. Antimatter nuclei with B < -1 have been observed
only as rare products of interactions at particle accelerators, where the rate
of antinucleus production in high-energy collisions decreases by about 1000
with each additional antinucleon. We present the observation of the antimatter
helium-4 nucleus, the heaviest observed antinucleus. In total 18
counts were detected at the STAR experiment at RHIC in 10 recorded Au+Au
collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon
pair. The yield is consistent with expectations from thermodynamic and
coalescent nucleosynthesis models, which has implications beyond nuclear
physics.Comment: 19 pages, 4 figures. Submitted to Nature. Under media embarg
Measurements of and Production in + Collisions at = 200 GeV
We report measurements of charmed-hadron (, ) production cross
sections at mid-rapidity in + collisions at a center-of-mass energy of
200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the
hadronic decays , and their charge conjugates,
covering the range of 0.62.0 GeV/ and 2.06.0 GeV/ for
and , respectively. From this analysis, the charm-pair production cross
section at mid-rapidity is = 170 45
(stat.) (sys.) b. The extracted charm-pair cross section is
compared to perturbative QCD calculations. The transverse momentum differential
cross section is found to be consistent with the upper bound of a Fixed-Order
Next-to-Leading Logarithm calculation.Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev.
Inclusive charged hadron elliptic flow in Au + Au collisions at = 7.7 - 39 GeV
A systematic study is presented for centrality, transverse momentum ()
and pseudorapidity () dependence of the inclusive charged hadron elliptic
flow () at midrapidity() in Au+Au collisions at
= 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with
different methods, including correlations with the event plane reconstructed in
a region separated by a large pseudorapidity gap and 4-particle cumulants
(), are presented in order to investigate non-flow correlations and
fluctuations. We observe that the difference between and
is smaller at the lower collision energies. Values of , scaled by
the initial coordinate space eccentricity, , as a function
of are larger in more central collisions, suggesting stronger collective
flow develops in more central collisions, similar to the results at higher
collision energies. These results are compared to measurements at higher
energies at the Relativistic Heavy Ion Collider ( = 62.4 and 200
GeV) and at the Large Hadron Collider (Pb + Pb collisions at =
2.76 TeV). The values for fixed rise with increasing collision
energy within the range studied (). A comparison to
viscous hydrodynamic simulations is made to potentially help understand the
energy dependence of . We also compare the results to UrQMD
and AMPT transport model calculations, and physics implications on the
dominance of partonic versus hadronic phases in the system created at Beam
Energy Scan (BES) energies are discussed.Comment: 20 pages, 12 figures. Version accepted by PR
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at GeV
Dihadron azimuthal correlations containing a high transverse momentum (\pt)
trigger particle are sensitive to the properties of the nuclear medium created
at RHIC through the strong interactions occurring between the traversing parton
and the medium, i.e. jet-quenching. Previous measurements revealed a strong
modification to dihadron azimuthal correlations in Au+Au collisions with
respect to \pp\ and \dAu\ collisions. The modification increases with the
collision centrality, suggesting a path-length dependence to the jet-quenching
effect. This paper reports STAR measurements of dihadron azimuthal correlations
in mid-central (20-60\%) Au+Au collisions at \snn=200~GeV as a function of
the trigger particle's azimuthal angle relative to the event plane,
\phis=|\phit-\psiEP|. The azimuthal correlation is studied as a function of
both the trigger and associated particle \pt. The subtractions of the
combinatorial background and anisotropic flow, assuming Zero Yield At Minimum
(\zyam), are described. The away-side correlation is strongly modified, and the
modification varies with \phis, which is expected to be related to the
path-length that the away-side parton traverses. The pseudo-rapidity (\deta)
dependence of the near-side correlation, sensitive to long range \deta
correlations (the ridge), is also investigated. The ridge and jet-like
components of the near-side correlation are studied as a function of \phis.
The ridge appears to drop with increasing \phis while the jet-like component
remains approximately constant. ...Comment: 50 pages, 39 figures, 6 table
- …