805 research outputs found

    High-spatial-resolution CN and CS observation of two regions of massive star formation

    Full text link
    Molecular line CN, CS and mm continuum observations of two intermediate- to high-mass star-forming regions - IRAS20293+3952 and IRAS19410+2336 - obtained with the Plateau de Bure Interferometer at high spatial resolution reveal interesting characteristics of the gas and dust emission. In spite of the expectation that the CN and CS morphology might closely follow the dense gas traced by the dust continuum, both molecules avoid the most central cores. Comparing the relative line strengths of various CN hyperfine components, this appears not to be an opacity effect but to be due to chemical and physical effects. The CN data also indicate enhanced emission toward the different molecular outflows in the region. Regarding CS, avoiding the central cores can be due to high optical depth, but the data also show that the CS emission is nearly always associated with the outflows of the region. Therefore, neither CS nor CN appear well suited for dense gas and disk studies in these two sources, and we recommend the use of different molecules for future massive disk studies. An analysis of the 1 and 3mm continuum fluxes toward IRAS20293+3952 reveals that the dust opacity index beta is lower than the canonical value of 2. Tentatively, we identify a decreasing gradient of beta from the edge of the core to the core center. This could be due to increasing optical depth toward the core center and/or grain growth within the densest cores and potential central disks. We detect 3mm continuum emission toward the collimated outflow emanating from IRAS20293+3952. The spectral index of alpha ~ 0.8 in this region is consistent with standard models for collimated ionized winds.Comment: 5 pages, 2 tables, 9 figures, accepted for Ap

    Submillimeter spectroscopy of southern hot cores: NGC6334(I) and G327.3-0.6

    Get PDF
    High-mass star-forming regions are known to have a rich molecular spectrum from many species. Some of the very highly excited lines are emitted from very hot and dense gas close to the central object(s). The physics and chemistry of the inner cores of two high mass star forming regions, NGC6334(I) and G327.3-0.6, shall be characterized. Submillimeter line surveys with the APEX telescope provide spectra which sample many molecular lines at high excitation stages. Partial spectral surveys were obtained, the lines were identified, physical parameters were determined through fitting of the spectra. Both sources show similar spectra that are comparable to that of the only other high mass star forming region ever surveyed in this frequency range}, Orion-KL, but with an even higher line density. Evidence for very compact, very hot sources is found.Comment: APEX A&A special issue, accepte

    Detection of FeO towards SgrB2

    Get PDF
    We have observed the J=5-4 ground state transition of FeO at a frequency of 153 GHz towards a selection of galactic sources. Towards the galactic center source SgrB2, we see weak absorption at approximately the velocity of other features towards this source (62 km s1^{-1} LSR). Towards other sources, the results were negative as they were also for MgOH(3-2) and FeC(6-5). We tentatively conclude that the absorption seen toward SgrB2 is due to FeO in the hot (\sim 500 K) relatively low density absorbing gas known to be present in this line of sight. This is the first (albeit tentative) detection of FeO or any iron--containing molecule in the interstellar gas. Assuming the observed absorption to be due to FeO, we estimate [FeO]/[SiO] to be of order or less than 0.002 and [FeO]/[H2_{2}] of order 310113 10^{-11}. This is compatible with our negative results in other sources. Our results suggest that the iron liberated from grains in the shocks associated with SgrB2 remains atomic and is not processed into molecular form.Comment: 1 postscrit figure,10 page

    Ionization toward the high-mass star-forming region NGC 6334 I

    Get PDF
    Context. Ionization plays a central role in the gas-phase chemistry of molecular clouds. Since ions are coupled with magnetic fields, which can in turn counteract gravitational collapse, it is of paramount importance to measure their abundance in star-forming regions. Aims. We use spectral line observations of the high-mass star-forming region NGC 6334 I to derive the abundance of two of the most abundant molecular ions, HCO+ and N2H+, and consequently, the cosmic ray ionization rate. In addition, the line profiles provide information about the kinematics of this region. Methods. We present high-resolution spectral line observations conducted with the HIFI instrument on board the Herschel Space Observatory of the rotational transitions with Jup > 5 of the molecular species C17O, C18O, HCO+, H13CO+, and N2H+. Results. The HCO+ and N2H+ line profiles display a redshifted asymmetry consistent with a region of expanding gas. We identify two emission components in the spectra, each with a different excitation, associated with the envelope of NGC 6334 I. The physical parameters obtained for the envelope are in agreement with previous models of the radial structure of NGC 6334 I based on submillimeter continuum observations. Based on our new Herschel/HIFI observations, combined with the predictions from a chemical model, we derive a cosmic ray ionization rate that is an order of magnitude higher than the canonical value of 10^(-17) s-1. Conclusions. We find evidence of an expansion of the envelope surrounding the hot core of NGC 6334 I, which is mainly driven by thermal pressure from the hot ionized gas in the region. The ionization rate seems to be dominated by cosmic rays originating from outside the source, although X-ray emission from the NGC 6334 I core could contribute to the ionization in the inner part of the envelope.Comment: This paper contains a total of 10 figures and 3 table

    The evolutionary state of the southern dense core Cha-MMS1

    Get PDF
    Aims: Our goal is to set constraints on the evolutionary state of the dense core Cha-MMS1 in the Chamaeleon I molecular cloud. Methods: We analyze molecular line observations carried out with the new submillimeter telescope APEX. We look for outflow signatures around the dense core and probe its chemical structure, which we compare to predictions of models of gas-phase chemistry. We also use the public database of the Spitzer Space Telescope (SST) to compare Cha-MMS1 with the two Class 0 protostars IRAM 04191 and L1521F, which are at the same distance. Results: We measure a large deuterium fractionation for N2H+ (11 +/- 3 %), intermediate between the prestellar core L1544 and the very young Class 0 protostar L1521F. It is larger than for HCO+ (2.5 +/- 0.9 %), which is probably the result of depletion removing HCO+ from the high-density inner region. Our CO(3-2) map reveals the presence of a bipolar outflow driven by the Class I protostar Ced 110 IRS 4 but we do not find evidence for an outflow powered by Cha-MMS1. We also report the detection of Cha-MMS1 at 24, 70 and 160 microns by the instrument MIPS of the SST, at a level nearly an order of magnitude lower than IRAM 04191 and L1521F. Conclusions: Cha-MMS1 appears to have already formed a compact object, either the first hydrostatic core at the very end of the prestellar phase, or an extremely young protostar that has not yet powered any outflow, at the very beginning of the Class 0 accretion phase.Comment: Accepted by Astronomy & Astrophysics as a letter, to appear in the special issue on the APEX first result

    Carbon recombination lines in the Orion Bar

    Full text link
    We have carried out VLA D-array observations of the C91alpha carbon recombination line as well as Effelsberg 100-m observations of the C65alpha line in a 5 arcmin square region centered between the Bar and the Trapezium stars in the Orion Nebula with spatial resolutions of 10 arcsec and 40 arcsec, respectively. The results show the ionized carbon in the PDR associated with the Orion Bar to be in a thin, clumpy layer sandwiched between the ionization front and the molecular gas. From the observed line widths we get an upper limit on the temperature in the C+ layer of 1500 K and from the line intensity a hydrogen density between 5 10^4 and 2.5 10^5 cm-3 for a homogeneous medium. The observed carbon level population is not consistent with predictions of hydrogenic recombination theory but could be explained by dielectronic recombination. The layer of ionized carbon seen in C91alpha is found to be essentially coincident with emission in the v=1-0 S(1) line of vibrationally excited molecular hydrogen. This is surprising in the light of current PDR models and some possible explanations of the discrepancy are discussed.Comment: 9 pages, 3 Postscript figures, uses aaspp4 and psfig, To Appear in ApJ Letters (accepted Jul. 24, 1997

    A Direct Measurement of the Total Gas Column Density in Orion KL

    Get PDF
    The large number of high-J lines of C^(18)O available via the Herschel Space Observatory provide an unprecedented ability to model the total CO column density in hot cores. Using the emission from all the observed lines (up to J = 15-14), we sum the column densities in each individual level to obtain the total column after correcting for the population in the unobserved states. With additional knowledge of source size, V_(LSR), and line width, and both local thermodynamic equilibrium (LTE) and non-LTE modeling, we have determined the total C^(18)O column densities in the Extended Ridge, Outflow/Plateau, Compact Ridge, and Hot Core components of Orion KL to be 1.4 × 10^(16) cm^(–2), 3.5 × 10^(16) cm^(–2), 2.2 × 10^(16) cm^(–2), and 6.2 × 10^(16) cm^(–2), respectively. We also find that the C^(18)O/C^(17)O abundance ratio varies from 1.7 in the Outflow/Plateau, 2.3 in the Extended Ridge, 3.0 in the Hot Core, and to 4.1 in the Compact Ridge. This is in agreement with models in which regions with higher ultraviolet radiation fields selectively dissociate C^(17)O, although care must be taken when interpreting these numbers due to the size of the uncertainties in the C^(18)O/C^(17)O abundance ratio

    H2CO and CH3OH maps of the Orion Bar photodissociation region

    Get PDF
    A previous analysis of methanol and formaldehyde towards the Orion Bar concluded that the two molecular species may trace different physical components, methanol the clumpy material, and formaldehyde the interclump medium. To verify this hypothesis, we performed multi-line mapping observations of the two molecules to study their spatial distributions. The observations were performed with the IRAM-30m telescope at 218 and 241 GHz, with an angular resolution of ~11''. Additional data for H2CO from the Plateau de Bure array are also discussed. The data were analysed using an LVG approach. Both molecules are detected in our single-dish data. Our data show that CH3OH peaks towards the clumps of the Bar, but its intensity decreases below the detection threshold in the interclump material. When averaging over a large region of the interclump medium, the strongest CH3OH line is detected with a peak intensity of ~0.06K. Formaldehyde also peaks on the clumps, but it is also detected in the interclump gas. We verified that the weak intensity of CH3OH in the interclump medium is not caused by the different excitation conditions of the interclump material, but reflects a decrease in the column density of methanol. The abundance of CH3OH relative to H2CO decreases by at least one order of magnitude from the dense clumps to the interclump medium.Comment: 11 pages, accepted for publication in A&

    CO and CH3OH observations of the BHR71 outflows with APEX

    Get PDF
    Context : Highly-collimated outflows are believed to be the earliest stage in outflow evolution, so their study is essential for understanding the processes driving outflows. The BHR71 Bok globule is known to harbour such a highly-collimated outflow, which is powered by a protostar belonging to a protobinary system. Aims : We aimed at investigating the interaction of collimated outflows with the ambient molecular cloud by using molecular tracers. Methods : We mapped the BHR71 highly-collimated outflow in CO(3-2) with the APEX telescope, and observed several bright points of the outflow in the molecular transitions CO(4-3), 13CO(3-2), C18O(3-2), and CH3OH(7-6). We use an LVG code to characterise the temperature enhancements in these regions. Results : In our CO(3-2) map, the second outflow driven by IRS2, which is the second source of the binary system, is completely revealed and shown to be bipolar. We also measure temperature enhancements in the lobes. The CO and methanol LVG modelling points to temperatures between 30 and 50K in the IRS1 outflow, while the IRS2 outflow seems to be warmer (up to 300K).Comment: 4 pages, 5 Figures, accepted by A&A Letters, to appear in the APEX First results special issu
    corecore