2,510 research outputs found

    Current clinical practice in disabling and chronic migraine in the primary care setting: results from the European My-LIFE anamnesis survey.

    Get PDF
    Migraine is a prevalent and disabling headache disorder that affects more than 1.04 billion individuals world-wide. It can result in reduction in quality of life, increased disability, and high socio-economic burden. Nevertheless, and despite the availability of evidence-based national and international guidelines, the management of migraine patients often remains suboptimal, especially for chronic migraine (CM) patients. My-LIFE anamnesis project surveyed 201 General practitioners (GPs) from 5 European countries (France, Germany, Italy, Spain, and the UK) with the aim of understanding chronic migraine (CM) patients' management in the primary care setting. In our survey, GPs diagnosed episodic migraine (EM) more often than CM (87% vs 61%, p < 0.001). We found that many CM patients were not properly managed or referred to specialists, in contrast to guidelines recommendations. The main tools used by primary-care physicians included clinical interview, anamnesis guide, and patient diary. Tools used at the first visit differed from those used at follow-up visits. Up to 82% of GPs reported being responsible for management of patients diagnosed with disabling or CM and did not refer them to a specialist. Even when the GP had reported referring CM patients to a specialist, 97% of them were responsible for their follow-up. Moreover, the treatment prescribed, both acute and preventive, was not in accordance with local and international recommendations. GPs reported that they evaluated the efficacy of the treatment prescribed mainly through patient perception, and the frequency of follow-up visits was not clearly established in the primary care setting. These results suggest that CM is underdiagnosed and undertreated; thereby its management is suboptimal in the primary care. There is a need of guidance in the primary care setting to both leverage the management of CM patients and earlier referral to specialists, when appropriate

    Modeling PM10 Originating from Dust Intrusions in the Southern Iberian Peninsula Using HYSPLIT

    Get PDF
    The Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT) model has been applied to calculate the spatial and temporal distributions of dust originating from North Africa. The model has been configured to forecast hourly particulate matter#10 mm(PM10) dust concentrations focusing on the impacts over the southern Iberian Peninsula. Two full years (2008 and 2009) have been simulated and compared against surface background measurement sites. A statistical analysis using discrete and categorical evaluations is presented. The model is capable of simulating the occurrence of Saharan dust episodes as observed at the measurement stations and captures the generally higher levels observed in eastern Andalusia, Spain, with respect to the western Andalusia station. But the simulation tends to underpredict the magnitude of the dust concentration peaks. The model has also been qualitatively compared with satellite data, showing generally good agreement in the spatial distribution of the dust column

    Biological Activity and Implications of the Metalloproteinases in Diabetic Foot Ulcers

    Get PDF
    Inadequate metabolic control predisposes diabetic patient to a series of complications on account of diabetes mellitus (DM). Among the most common complications of DM is neuropathy, which causes microvascular damage by hyperglycemia in the lower extremities which arrives characterized by a delayed closing. The global prevalence of diabetic neuropathy (DN) was 66% of people with diabetes in 2015, representing the principal cause of total or partial lower extremities amputation, with 22.6% of the patients with DN. Matrix metalloproteinases (MMPs) are involved in healing. The function that these mainly play is the degradation during inflammation that has as consequence the elimination of the extracellular matrix (ECM), the disintegration of the capillary membrane to give way to angiogenesis and cellular migration for the remodeling of damaged tissue. The imbalance in MMPs may increase the chronicity of a wound, what leads to chronic foot ulcers and amputation. This chapter focuses on the role of MMPs in diabetic wound healing

    The human diabetes proteome project (HDPP): The 2014 update

    Get PDF
    Diabetes is an increasing worldwide problem leading to major associated health issues and increased health care costs. In 2012, 9.3% of the American population was affected by diabetes, according to the American Diabetes Association, with 1.7 million of new cases since during the year (www.diabetes.org). Proteome initiatives can provide a deeper understanding of the biology of this disease and help develop more effective treatments. The collaborative effort of the Human Diabetes Proteome Project (HDPP) brings together a wide variety of complementary resources to increase the existing knowledge about both type 1 and type 2 diabetes and their related complications. The goals are to identify proteins and protein isoforms associated with the pathology and to characterize underlying disease-related pathways and mechanisms. Moreover, a considerable effort is being made on data integration and network biology. Sharing these data with the scientific community will be an important part of the consortium. Here we report on: the content of the HDPP session held at the 12th HUPO meeting in Yokohama; recent achievements of the consortium; discussions of several HDPP workshops; as well as future HDPP directions as discussed at the 13th HUPO congress in Madrid, with a special attention given to the lists of prioritized, diabetes-related proteins and the proteomic means to study them.</p

    The QUIJOTE experiment: project status and first scientific results

    Get PDF
    We present the current status of the QUIJOTE (Q-U-I JOint TEnerife) experiment, a new polarimeter with the aim of characterizing the polarization of the Cosmic Microwave Background, and other galactic or extra-galactic physical processes that emit in microwaves in the frequency range 10–42 GHz, and at large angular scales (around 1 degree resolution). The experiment has been designed to reach the required sensitivity to detect a primordial gravitational wave component in the CMB, provided its tensor-to-scalar ratio is larger than r ∼ 0.05. The project consists of two telescopes and three instruments which will survey a large sky area from the Teide Observatory to provide I, Q and U maps of high sensitivity. The first QUIJOTE instrument, known as Multi-Frequency Instrument (MFI), has been surveying the northern sky in four individual frequencies between 10 and 20 GHz since November 2012, providing data with an average sensitivity of 80 µK beam−1 in Q and U in a region of 20, 000 square-degrees. The second instrument, or Thirty-GHz Instrument (TGI), is currently undergoing the commissioning phase, and the third instrument, or Forty-GHz Instrument (FGI), is in the final fabrication phase. Finally, we describe the first scientific results obtained with the MFI. Some specific regions, mainly along the Galactic plane, have been surveyed to a deeper depth, reaching sensitivities of around 40 µK beam−1. We present new upper limits on the polarization of the anomalous dust emission, resulting from these data, in the Perseus molecular complex and in the W43 molecular complex

    The status of the Quijote multi-frequency instrument

    Get PDF
    The QUIJOTE-CMB project has been described in previous publications. Here we present the current status of the QUIJOTE multi-frequency instrument (MFI) with five separate polarimeters (providing 5 independent sky pixels): two which operate at 10-14 GHz, two which operate at 16-20 GHz, and a central polarimeter at 30 GHz. The optical arrangement includes 5 conical corrugated feedhorns staring into a dual reflector crossed-draconian system, which provides optimal cross-polarization properties (designed to be < -35 dB) and symmetric beams. Each horn feeds a novel cryogenic on-axis rotating polar modulator which can rotate at a speed of up to 1 Hz. The science driver for this first instrument is the characterization of the galactic emission. The polarimeters use the polar modulator to derive linear polar parameters Q, U and I and switch out various systematics. The detection system provides optimum sensitivity through 2 correlated and 2 total power channels. The system is calibrated using bright polarized celestial sources and through a secondary calibration source and antenna. The acquisition system, telescope control and housekeeping are all linked through a real-time gigabit Ethernet network. All communication, power and helium gas are passed through a central rotary joint. The time stamp is synchronized to a GPS time signal. The acquisition software is based on PLCs written in Beckhoffs TwinCat and ethercat. The user interface is written in LABVIEW. The status of the QUIJOTE MFI will be presented including pre-commissioning results and laboratory testing

    The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions

    Get PDF
    The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10-40GHz and at large and medium angular scales. The first of the two QUIJOTE telescopes and the first multi-frequency (10-30GHz) instrument are already built and have been tested in the laboratory. QUIJOTE-CMB will be a valuable complement at low frequencies for the Planck mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05.The QUIJOTE-CMB experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester and Cambridge. Partial financial support is provided by the Spanish Ministry of Economy and Competitiveness (MINECO) under the projects AYA2010-21766-C03 (01, 02 and 03), and also by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation49)

    Atherosclerotic pattern of coronary myocardial bridging assessed with CT coronary angiography

    Get PDF
    The aim of our study was to evaluate the atherosclerotic pattern of patients with coronary myocardial bridging (MB) by means of CT Coronary Angiography (CT-CA). 254 consecutive patients (166 male, mean age 58.6 ± 10.3) who underwent 64-slice CT-CA according to current clinical indications were reviewed for the presence of MB and concomitant segmental atherosclerotic pattern. Coronary plaques were assessed in all patients enrolled. 73 patients (29%) presented single (90%) or multiple (10%) MB, frequently (93%) localized in the mid-distal left anterior descending artery. The MB segment was always free of atherosclerosis. Segments proximal to the MB presented: no atherosclerotic disease (n = 37), positive remodeling (n = 23), 50% stenoses (n = 7). Distal segments presented a different atherosclerosis pattern (P < 0.0001): absence of disease (n = 73), no significant lesions (n = 8). No significant differences were found between segments proximal to MB and proximal coronary segments apart from left main trunk. Pattern of atherosclerotic lesions located in segments 6 and 7 significantly differs between patients with MB and patients without MB (P < 0.05). CT-CA is a reliable method to non-invasively demonstrate MB and related atherosclerotic pattern. CT-CA provides new insight regarding atherosclerosis distribution in segments close to MB

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201
    corecore