4,078 research outputs found
Chandra Observations of the X-Ray Jet of 3C273
We report results from Chandra observations of the X-ray jet of 3C~273 during
the calibration phase in 2000 January. The zeroeth-order images and spectra
from two 40-ks exposures with the HETG and LETG+ACIS-S show a complex X-ray
structure. The brightest optical knots are detected and resolved in the 0.2-8
keV energy band. The X-ray morphology tracks well the optical. However, while
the X-ray brightness decreases along the jet, the outer parts of the jet tend
to be increasingly bright with increasing wavelength. The spectral energy
distributions of four selected regions can best be explained by inverse Compton
scattering of (beamed) cosmic microwave background photons. The model
parameters are compatible with equipartition and a moderate Doppler factor,
which is consistent with the one-sidedness of the jet. Alternative models
either imply implausible physical conditions and energetics (the synchrotron
self-Compton model) or are sufficiently ad hoc to be unconstrained by the
present data (synchrotron radiation from a spatially or temporally distinct
particle population).Comment: 3 figures; Figure 1 in color. Accepted for publication by ApJ Letter
Large-Scale Regular Morphological Patterns in the Radio Jet of NGC 6251
We report on large-scale, regular morphological patterns found in the radio
jet of the nearby radio galaxy NGC 6251. Investigating morphological properties
of this radio jet from the nucleus to a radial distance of 300 arcsec
( 140 kpc) mapped at 1662 MHz and 4885 MHz by Perley, Bridle, &
Willis, we find three chains, each of which consists of five radio knots. We
also find that eight radio knots in the first two chains consist of three small
sub-knots (the triple-knotty substructures). We discuss the observational
properties of these regular morphological patterns.Comment: 8 figures, 15 pages, accepted for publication in A
Cómo y de qué hablamos los docentes cuando diseñamos unidades didácticas cooperativamente : estudio etnográfico del trabajo en grupo de profesores de Ciencias de secundaria mediante análisis discursivo
Effect of isoelectronic doping on honeycomb lattice iridate A_2IrO_3
We have investigated experimentally and theoretically the series
(NaLi)IrO. Contrary to what has been believed so far,
only for the system forms uniform solid solutions. For larger Li
content, as evidenced by powder X-ray diffraction, scanning electron microscopy
and density functional theory calculations, the system shows a miscibility gap
and a phase separation into an ordered NaLiIrO phase with
alternating Na and LiIrO planes, and a Li-rich phase close to pure
LiIrO. For we observe (1) an increase of with Li
doping up to , despite the fact that in pure LiIrO is
smaller than in NaIrO, and (2) a gradual reduction of the
antiferromagnetic ordering temperature and ordered moment. The
previously proposed magnetic quantum phase transition at may
occur in a multiphase region and its nature needs to be re-evaluated.Comment: 8 pages, 9 figures including supplemental informatio
Recommended from our members
Thorium Energy Futures
The potential for thorium as an alternative or supplement to uranium in fission power generation has long been recognised, and several reactors, of various types, have already operated using thorium-based fuels. Accelerator Driven Subcritical (ADS) systems have benefits and drawbacks when compared to conventional critical thorium reactors, for both solid and molten salt fuels. None of the four options – liquid or solid, with or without an accelerator – can yet be rated as better or worse than the other three, given today's knowledge. We outline the research that will be necessary to lead to an informed choice
Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments
The study of the formation of molecular hydrogen on low temperature surfaces
is of interest both because it allows to explore elementary steps in the
heterogeneous catalysis of a simple molecule and because of the applications in
astrochemistry. Here we report results of experiments of molecular hydrogen
formation on amorphous silicate surfaces using temperature-programmed
desorption (TPD). In these experiments beams of H and D atoms are irradiated on
the surface of an amorphous silicate sample. The desorption rate of HD
molecules is monitored using a mass spectrometer during a subsequent TPD run.
The results are analyzed using rate equations and the activation energies of
the processes leading to molecular hydrogen formation are obtained from the TPD
data. We show that a model based on a single isotope provides the correct
results for the activation energies for diffusion and desorption of H atoms.
These results can thus be used to evaluate the formation rate of H_2 on dust
grains under the actual conditions present in interstellar clouds.Comment: 30 pages, 1 table, 6 figures. Published versio
Dramatic Changes in the Electronic Structure Upon Transition to the Collapsed Tetragonal Phase in CaFe2As2
We use angle-resolved photoemission spectroscopy (ARPES) and density
functional theory (DFT) calculations to study the electronic structure of
CaFeAs in previously unexplored collapsed tetragonal (CT) phase. This
unusual phase of the iron arsenic high temperature superconductors was hard to
measure as it exists only under pressure. By inducing internal strain, via the
post growth, thermal treatment of the single crystals, we were able to
stabilize the CT phase at ambient-pressure. We find significant differences in
the Fermi surface topology and band dispersion data from the more common
orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent
with electronic structure calculations. The top of the hole bands sinks below
the Fermi level, which destroys the nesting present in parent phases. The
absence of nesting in this phase along with apparent loss of Fe magnetic
moment, are now clearly experimentally correlated with the lack of
superconductivity in this phase.Comment: 5 pages, 4 figures, accepted in PRB(RC
Computer-assisted polyp matching between optical colonoscopy and CT colonography: a phantom study
Potentially precancerous polyps detected with CT colonography (CTC) need to
be removed subsequently, using an optical colonoscope (OC). Due to large
colonic deformations induced by the colonoscope, even very experienced
colonoscopists find it difficult to pinpoint the exact location of the
colonoscope tip in relation to polyps reported on CTC. This can cause unduly
prolonged OC examinations that are stressful for the patient, colonoscopist and
supporting staff.
We developed a method, based on monocular 3D reconstruction from OC images,
that automatically matches polyps observed in OC with polyps reported on prior
CTC. A matching cost is computed, using rigid point-based registration between
surface point clouds extracted from both modalities. A 3D printed and painted
phantom of a 25 cm long transverse colon segment was used to validate the
method on two medium sized polyps. Results indicate that the matching cost is
smaller at the correct corresponding polyp between OC and CTC: the value is 3.9
times higher at the incorrect polyp, comparing the correct match between polyps
to the incorrect match. Furthermore, we evaluate the matching of the
reconstructed polyp from OC with other colonic endoluminal surface structures
such as haustral folds and show that there is a minimum at the correct polyp
from CTC.
Automated matching between polyps observed at OC and prior CTC would
facilitate the biopsy or removal of true-positive pathology or exclusion of
false-positive CTC findings, and would reduce colonoscopy false-negative
(missed) polyps. Ultimately, such a method might reduce healthcare costs,
patient inconvenience and discomfort.Comment: This paper was presented at the SPIE Medical Imaging 2014 conferenc
- …
