307 research outputs found

    Durability design of reinforced concrete structures: a comparison of the use of durability indexes in the deemed-to-satisfy approach and the full-probabilistic approach

    Get PDF
    Abstract: To show the application of the chloride conductivity index test in service life prediction (SLP) using both the deemed-to-satisfy and probabilistic approaches to performance-based durability design. It is desirable to adopt a performance-based approach with respect to durability design of reinforced concrete (RC) structures. This is based on the perception that the durability of RC is achieved when the limiting value from an established test method is met. In South Africa, the durability index (DI) approach has been developed, which permits performance-based specifications for durability of RC. This approach involves the application of a test method together with a SLP model. This integrated approach links material properties directly with the expected service life of RC structures and environmental conditions. Two DIs are relevant to degradation processes in RC: the chloride conductivity index which is related to chloride ingress, and the oxygen permeability index related to carbonation. The study presented here focuses on the application of the chloride conductivity index as the main input parameter of a SLP model concerned with chloride-induced reinforcement corrosion. The methodology and output of the SLP model as applied in the deemed-to-satisfy approach are compared with those of the probabilistic approach. Both approaches are exemplified using a concrete pier cast in situ in a marine environment. The performance-based durability specifications from the deemed-to-satisfy approach are found to be more conservative compared to those of the probabilistic approach

    The J-value and its role in evaluating investments in fire safety schemes

    Get PDF
    Fire safety engineers endeavour to ensure that a design achieves an adequate level of fire safety. For uncommon buildings, adequate safety cannot be based on precedent and an explicit evaluation of the adequacy of proposed safety features may be required. Commonly, this requires demonstration that the residual risk associated with the design is as low as is reasonably practicable. In those situations, a measure for a safety scheme’s benefit relative to its cost is required, as more efficient safety schemes should be preferred over less efficient ones to maximize the number of lives saved under societal resource constraints. To this end, the J-value has been introduced in other engineering fields as a decision support indicator for assessing the efficacy of safety features. The J-value has been derived from societal welfare considerations (the Life Quality Index) and is adopted in the current paper for applications in fire safety engineering. It is demonstrated herein how the J-value can inform decisions on fire safety, and how it can provide a basis for assessing whether or not a proposed fire safety scheme should be implemented. Future work will focus on its implementation as a tool for assessing the benefit of real life fire safety scheme implementations, such as sprinkler installations

    Preclinical assessment of CAR-NK cell-mediated killing efficacy and pharmacokinetics in a rapid zebrafish xenograft model of metastatic breast cancer

    Get PDF
    Natural killer (NK) cells are attractive effectors for adoptive immunotherapy of cancer. Results from first-in-human studies using chimeric antigen receptor (CAR)-engineered primary NK cells and NK-92 cells are encouraging in terms of efficacy and safety. In order to further improve treatment strategies and to test the efficacy of CAR-NK cells in a personalized manner, preclinical screening assays using patient-derived tumor samples are needed. Zebrafish (Danio rerio) embryos and larvae represent an attractive xenograft model to study growth and dissemination of patient-derived tumor cells because of their superb live cell imaging properties. Injection into the organism’s circulation allows investigation of metastasis, cancer cell-to-immune cell-interactions and studies of the tumor cell response to anti-cancer drugs. Here, we established a zebrafish larval xenograft model to test the efficacy of CAR-NK cells against metastatic breast cancer in vivo by injecting metastatic breast cancer cells followed by CAR-NK cell injection into the Duct of Cuvier (DoC). We validated the functionality of the system with two different CAR-NK cell lines specific for PD-L1 and ErbB2 (PD-L1.CAR NK-92 and ErbB2.CAR NK-92 cells) against the PD-L1-expressing MDA-MB-231 and ErbB2-expressing MDA-MB-453 breast cancer cell lines. Injected cancer cells were viable and populated peripheral regions of the larvae, including the caudal hematopoietic tissue (CHT), simulating homing of cancer cells to blood forming sites. CAR-NK cells injected 2.5 hours later migrated to the CHT and rapidly eliminated individual cancer cells throughout the organism. Unmodified NK-92 also demonstrated minor in vivo cytotoxicity. Confocal live-cell imaging demonstrated intravascular migration and real-time interaction of CAR-NK cells with MDA-MB-231 cells, explaining the rapid and effective in vivo cytotoxicity. Thus, our data suggest that zebrafish larvae can be used for rapid and cost-effective in vivo assessment of CAR-NK cell potency and to predict patient response to therapy

    Vibro-Injection Pile Installation in Sand: Part I—Interpretation as Multi-material Flow

    Get PDF
    The installation of vibro-injection piles into saturated sand has a significant impact on the surrounding soil and neighboring buildings. It is generally characterized by a multi-material flow with large material deformations, non-stationary and new material interfaces, and by the interaction of the grain skeleton and the pore water. Part 1 in this series of papers is concerned with the mathematical and physical modeling of the multi-material flow associated with vibro-injection pile installation. This model is the backbone of a new multi-material arbitrary Lagrangian-Eulerian (MMALE) numerical method presented in Part 2.DFG, 76838227, Numerische Modellierung der Herstellung von Rüttelinjektionspfähle

    Fragmentation processes of ionized 5-fluorouracil in the gas phase and within clusters

    Get PDF
    We have measured mass spectra for positive ions produced from neutral 5-fluorouracil by electron impact at energies from 0 to 100 eV. Fragment ion appearance energies of this (radio-)chemotherapy agent have been determined for the first time and we have identified several new fragment ions of low abundance. The main fragmentations are similar to uracil, involving HNCO loss and subsequent HCN loss, CO loss, or FCCO loss. The features adjacent to these prominent peaks in the mass spectra are attributed to tautomerization preceding the fragmentation and/or the loss of one or two additional hydrogen atoms. A few fragmentions are distinct for 5-fluorouracil compared to uracil, most notably the production of the reactive moiety CF+. Finally, multiphoton ionization mass spectra are compared for 5-fluorouracil from a laser thermal desorption source and from a supersonic expansion source. The detection of a new fragment ion at 114 u in the supersonic expansion experiments provides the first evidence for a clustering effect on the radiation response of 5-fluorouracil. By analogy with previous experiments and calculations on protonated uracil, this is assigned to NH3 loss from protonated 5-fluorouracil

    Modifying patterns of movement in people with low back pain -does it help? A systematic review

    Get PDF
    Background: Physiotherapy for people with low back pain frequently includes assessment and modification of lumbo-pelvic movement. Interventions commonly aim to restore normal movement and thereby reduce pain and improve activity limitation. The objective of this systematic review was to investigate: (i) the effect of movement-based interventions on movement patterns (muscle activation, lumbo-pelvic kinematics or postural patterns) of people with low back pain (LBP), and (ii) the relationship between changes in movement patterns and subsequent changes in pain and activity limitation. Methods. MEDLINE, Cochrane Central, EMBASE, AMI, CINAHL, Scopus, AMED, ISI Web of Science were searched from inception until January 2012. Randomised controlled trials or controlled clinical trials of people with LBP were eligible for inclusion. The intervention must have been designed to influence (i) muscle activity patterns, (ii) lumbo-pelvic kinematic patterns or (iii) postural patterns, and included measurement of such deficits before and after treatment, to allow determination of the success of the intervention on the lumbo-pelvic movement. Twelve trials (25% of retrieved studies) met the inclusion criteria. Two reviewers independently identified, assessed and extracted data. The PEDro scale was used to assess method quality. Intervention effects were described using standardised differences between group means and 95% confidence intervals. Results: The included trials showed inconsistent, mostly small to moderate intervention effects on targeted movement patterns. There was considerable heterogeneity in trial design, intervention type and outcome measures. A relationship between changes to movement patterns and improvements in pain or activity limitation was observed in one of six studies on muscle activation patterns, one of four studies that examined the flexion relaxation response pattern and in two of three studies that assessed lumbo-pelvic kinematics or postural characteristics. Conclusions: Movement-based interventions were infrequently effec tive for changing observable movement patterns. A relationship between changes in movement patterns and improvement in pain or activity limitation was also infrequently observed. No independent studies confirm any observed relationships. Challenges for future research include defining best methods for measuring (i) movement aberrations, (ii) improvements in movements, and (iii) the relationship between changes in how people move and associated changes in other health indicators such as activity limitation

    A Seismic Performance Classification Framework to Provide Increased Seismic Resilience

    Get PDF
    Several performance measures are being used in modern seismic engineering applications, suggesting that seismic performance could be classified a number of ways. This paper reviews a range of performance measures currently being adopted and then proposes a new seismic performance classification framework based on expected annual losses (EAL). The motivation for an EAL-based performance framework stems from the observation that, in addition to limiting lives lost during earthquakes, changes are needed to improve the resilience of our societies, and it is proposed that increased resilience in developed countries could be achieved by limiting monetary losses. In order to set suitable preliminary values of EAL for performance classification, values of EAL reported in the literature are reviewed. Uncertainties in current EAL estimates are discussed and then an EAL-based seismic performance classification framework is proposed. The proposal is made that the EAL should be computed on a storey-by-storey basis in recognition that EAL for different storeys of a building could vary significantly and also recognizing that a single building may have multiple owners
    • …
    corecore