44,560 research outputs found

    Comment on ``Consistency, amplitudes and probabilities in quantum theory'' by A. Caticha

    Full text link
    A carefully written paper by A. Caticha [Phys. Rev. A57, 1572 (1998)] applies consistency arguments to derive the quantum mechanical rules for compounding probability amplitudes in much the same way as earlier work by the present author [J. Math. Phys. 29, 398 (1988) and Int. J. Theor. Phys. 27, 543 (1998)]. These works are examined together to find the minimal assumptions needed to obtain the most general results

    Another self-similar blast wave: Early time asymptote with shock heated electrons and high thermal conductivity

    Get PDF
    Accurate approximations are presented for the self-similar structures of nonradiating blast waves with adiabatic ions, isothermal electrons, and equation ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform density case) and have negligible external pressure. The results provide the early time asymptote for systems with shock heating of electrons and strong thermal conduction. In addition, they provide analytical results against which two fluid numerical hydrodynamic codes can be checked

    High-resolution [C II] imaging of HDF850.1 reveals a merging galaxy at z=5.185

    Full text link
    New high-resolution maps with the IRAM Interferometer of the redshifted [C II] 158 micron line and the 0.98mm dust continuum of HDF850.1 at z = 5.185 show the source to have a blueshifted northern component and a redshifted southern component, with a projected separation of 0.3 arcsec, or 2 kpc. We interpret these components as primordial galaxies that are merging to form a larger galaxy. We think it is the resulting merger-driven starburst that makes HDF850.1 an ultraluminous infrared galaxy, with an L(IR) of 1E13 Lsun. The observed line and continuum brightness temperatures and the constant line-to-continuum ratio across the source imply (1) high [C II] line optical depth, (2) a [C II] excitation temperature of the same order as the dust temperature, and (3) dust continuum emission that is nearly optically thick at 158 microns. These conclusions for HDF850.1 probably also apply to other high-redshift submillimeter galaxies and quasar hosts in which the [C II] 158 micron line has been detected, as indicated by their roughly constant [C II]-to-158 micron continuum ratios, in sharp contrast to the large dispersion in their [C II]-to-FIR luminosity ratios. In brightness temperature units, the [C II] line luminosity is about the same as the predicted CO(1-0) luminosity, implying that the [C II] line can also be used to estimate the molecular gas mass, with the same assumptions as for CO.Comment: Accepted by Astronomy and Astrophysic

    Evaluating force field accuracy with long-time simulations of a tryptophan zipper peptide

    Full text link
    We have combined a custom implementation of the fast multiple-time-stepping LN integrator with parallel tempering to explore folding properties of small peptides in implicit solvent on the time scale of microseconds. We applied this algorithm to the synthetic {\beta}-hairpin trpzip2 and one of its sequence variants W2W9. Each simulation consisted of over 12 {\mu}s of aggregated virtual time. Several measures of folding behavior showed convergence, allowing comparison with experimental equilibrium properties. Our simulations suggest that the electrostatic interaction of tryptophan sidechains is responsible for much of the stability of the native fold. We conclude that the ff99 force field combined with ff96 {\phi} and {\psi} dihedral energies and implicit solvent can reproduce plausible folding behavior in both trpzip2 and W2W9.Comment: 10 pages, 11 figures, submitted to the Journal of Chemical Physics on June 28, 201

    Behavior of soils under impact loading

    Get PDF
    Experimental soil behavior under impact loadin

    Causal Inference When Counterfactuals Depend on the Proportion of All Subjects Exposed

    Full text link
    The assumption that no subject's exposure affects another subject's outcome, known as the no-interference assumption, has long held a foundational position in the study of causal inference. However, this assumption may be violated in many settings, and in recent years has been relaxed considerably. Often this has been achieved with either the aid of a known underlying network, or the assumption that the population can be partitioned into separate groups, between which there is no interference, and within which each subject's outcome may be affected by all the other subjects in the group via the proportion exposed (the stratified interference assumption). In this paper, we instead consider a complete interference setting, in which each subject affects every other subject's outcome. In particular, we make the stratified interference assumption for a single group consisting of the entire sample. This can occur when the exposure is a shared resource whose efficacy is modified by the number of subjects among whom it is shared. We show that a targeted maximum likelihood estimator for the i.i.d.~setting can be used to estimate a class of causal parameters that includes direct effects and overall effects under certain interventions. This estimator remains doubly-robust, semiparametric efficient, and continues to allow for incorporation of machine learning under our model. We conduct a simulation study, and present results from a data application where we study the effect of a nurse-based triage system on the outcomes of patients receiving HIV care in Kenyan health clinics.Comment: 23 pages main article, 23 pages supplementary materials + references, 4 tables, 1 figur

    Multiple Molecular H2 Outflows in AFGL 618

    Full text link
    We report high spatial (0.5 arcsec) and high spectral (9 km/s) resolution spectro-imaging of the 2.12 micron H2 1-0 S(1) line in the proto-planetary nebula AFGL 618 using BEAR at the CFHT. The observations reveal the presence of multiple, high-velocity, molecular outflows that align with the remarkable optical jets seen in HST images. The structure and kinematics of the outflows show how jets interact with circumstellar gas and shape the environment in which planetary nebulae form.Comment: 14 pages, 5 figures. To appear in The Astrophysical Journal Letter

    Mediation of Long Range Charge Transfer by Kondo Bound States

    Get PDF
    We present a theory of non-equilibrium long range charge transfer between donor and acceptor centers in a model polymer mediated by magnetic exciton (Kondo) bound states. Our model produces electron tunneling lengths easily exceeding 10A˚\AA, as observed recently in DNA and organic charge transfer systems. This long ranged tunneling is effective for weak to intermediate donor-bridge coupling, and is enhanced both by weak to intermediate strength Coulomb hole-electron attraction (through the orthogonality catastrophe) and by coupling to local vibrational modes.Comment: Revised content (broadened scope, vibrations added), submitted to Phys Rev Lett, added autho
    corecore