
ar
X

iv
:c

on
d-

m
at

/0
00

90
18

v3
  [

co
nd

-m
at

.s
tr

-e
l]

  1
6 

Ja
n 

20
02

Mediation of Long Range Charge Transfer by Kondo Bound States
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We present a theory of non-equilibrium long range charge transfer between donor and acceptor cen-
ters in a model polymer mediated by magnetic exciton (Kondo) bound states. Our model produces
electron tunneling lengths easily exceeding 10Å, as observed recently in DNA and organic charge
transfer systems. This long ranged tunneling is effective for weak to intermediate donor-bridge
coupling, and is enhanced both by weak to intermediate strength Coulomb hole-electron attraction
(through the orthogonality catastrophe) and by coupling to local vibrational modes.

PACS Indices: 72.15.Qm, 85.65.+h,87.15.-v

Charge transfer (CT) via quantum mechanical tunnel-
ing of electrons or holes through a molecular bridge be-
tween well separated donor (D) and acceptor (A) sites,
is central to many biological processes [1–4], and may
play a key role in molecular electronics applications [5,6].
For proteins, the CT rate typically decays exponentially
in the D/A separation with the inverse tunneling length
β = 1.1 ± 0.2Å−1 [2]. However, evidence for anoma-
lously small β values ( of order 0.1Å−1) has accrued for
CT between metallic intercalating complexes or organic
complexes in DNA [3,4], CT from ferrocene attached to
conjugated polymers [5,6], and a few other systems [7].
Values of β ∼ 1Å−1 are well accounted for in effective
one-electron theories with the D/A levels typically resid-
ing in the middle of the large insulating (4-6 eV) gaps of
the polypeptide bridges of proteins [8]. Understanding
smaller β values has generally required “fine tuning” of
the D/A levels close to the lowest unoccupied molecu-
lar level (LUMO) [9]. For DNA, this issue is coupled to
the magnitude of the electronic energy gap in DNA, an
exciting and hotly debated subject [10–13].

In this paper, we show that long range CT, with tun-
neling lenghths β−1 ≥ 10Å can be achieved in model
systems through mediation by a semiconducting, molec-
ular analogue of the Kondo state in which a localized
electron or hole moment is antiferromagnetically cou-
pled to a hole or electron donated to the bridge [14].
While our model for the tunneling bridge is a conju-
gated polymer, the conclusions are generic for a gapped
molecule. The bound state mechanism provides a ro-
bust basis for “fine tuning” D levels close to the LUMO.
We carry out our calculations both with a semi-analytic
variational method [15] as well as the density matrix
renormalization group (DMRG) approach, and the re-
sults agree very well. Adding the dielectrically screened
electron-hole Coulomb interaction to the Kondo coupling
leads to an enhancement of tunneling for weak to in-
termediate Coulomb strength through the orthogonality
catastrophe, and a crossover to deep Coulomb binding
for larger Coulomb interaction. Coupling to local vibra-
tional modes of the metal complexes also enhances the
CT rate, and can lead to normal or inverted regimes de-

pending upon the strength of the binding and the D/A
distance.

CT via a single tunneling event is intiated out of equi-
librium either by the absorption of light (photolysis) or
transfer of charge by radicals (radiolysis) so that an elec-
tron or hole at the D complex is energetically excited
above an empty level in the A complex; in this paper we
focus on photolytically prepared charge transfer. In the
simplest “diabatic” theory for which the electron tun-
neling matrix element HDA is small, the CT rate kct is
well described by a golden rule/linear response approach
(Marcus theory [1]), with

kct(T ) =
2π

h̄
|HDA|2F (T ) (1)

where F (T ) is the Franck-Condon factor [1]. HDA, which
is the main subject of this paper, carries the dominant
distance dependence.

The CT scenario involves three steps, and can only
arise when, as in Fig. 1, the excited D complex energy
lies at or near the bridge LUMO (a similar situation can
be realized for hole transfer with suitably reversed ener-
getics). Upon excitation (step 1), the D complex donates
an electron to the bridge, leaving behind a remnant hole
spin with antiferromagnetic coupling to the bridge elec-
tron (this interaction drives the Kondo binding in step
2). In step 3, the electron is transferred to the distant
donor level.

Experimental realization of the appropriate D energet-
ics seems possible. For example, for the Ru-complex met-
allointercalator used in DNA CT experiments [3], a 480
nm photoexcitation transfers electrons from Ru(II) to
the ligand (L∗) from which electron transfer to the DNA
presumably occurs (there is no direct Ru-DNA overlap),
leaving a hole spin in the t2g Ru shell. For DNA gaps of
1-2 eV, it is plausible that the excited Ru(III)-L∗ com-
plex lies above the electron addition threshold, though
estimates of the gap range from 0 eV [12,13], 1-2 eV
[10,16], and on up to 7 eV [17]. The 3.9 eV photoexcita-
tion energy of the adenine isomer 2-aminopurine (Ap) is
very comparable or in excess of the HOMO-LUMO gap
for isolated bases [4], although the initial CT matrix el-
ement to neighboring DNA bases is likely weaker than
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in the metallointercalator case, for which the ligand re-
sides between adjacent base pairs with more effective π-
overlap. Excitation of Rh(phi)2(bpy)3+ will produce con-
ditions favorable for hole transfer to adjacent sequences
of DNA-A bases [18,19]. For the 5-(p-tolyl)-tetracene
donor of ref. [5], the D photoexcitation energy is nearly
equal to the p-phenylenevinylene bridge gap for bridges
of 3-5 units, and judging from the trend, should become
higher for longer bridges. Thus, our considerations are
clearly relevant to these systems.

With these energetics, the Kondo singlet bound state
(KS) [20] is the most stable charge zero singlet state,
though the charge ±1 spin 1/2 state (free moment) can
be globally stable in a molecule or semiconductor [21].
Rapid KS formation is required to compete with other
processes, as discussed in Fig. 1. A lower bound estimate
for KS formation is τK ≈ h̄/EB, where EB is the binding
energy, in analogy to the reasoning used for Kondo reso-
nance formation time in quantum dots [22]. τK is of the
order of a few femtoseconds for EB = 0.1− 0.2eV. In the
semiconducting/molecular context, it will be divided by
a Franck-Condon factor FK since the excited D level re-
sides above the bound state. Provided FK ≤ 0.001 [24],
KS formation will likely beat luminescence (nanosecond
time scale) and phonon radiative decay to the A state
(large polaron formation) which can be estimated, utiliz-
ing polyacetylene parameters [23], to be of order 100 ps.
We stress that (i) no simple polaron dynamics will cause
kct to decay exponentially in the D/A separation, and
(ii) any polaron mediated contribution to kct is bounded
above by the large polaron result [25].

We simply model the insulating bridge as a dimerized
tight binding chain of length N (N even) with Hamilto-
nian HB given by [23]

HB = −
N

∑

i=1,σ

(t+ (−1)it′)(c†i+1σciσ + h.c.) (2)

where c†i+1σ creates an electron of spin σ at site i. This
model describes the πz bands of polyacetylene, and can
easily be extended to other conjugated polymers (as in
refs. [5,6]), but the bound state formation is not special
to this model bridge. For large N , this model produces
two bands with a full width of 4t and a gap of 2∆ = 4t′.
The acceptor complex is placed adjacent to site N of
the chain, and modeled as an Anderson impurity in the
empty orbital regime [14], with energy ǫA. To simplify
the analysis, we have taken the Coulomb repulsion U
between D holes to be infinite, and as in the Ru case
we assume there is a single hole in an otherwise filled
shell, with energy relative to the filled shell of ǫD. The
hybridization Hamiltonian coupling the D/A complexes
and bridge is

HBDA =
∑

σ

[VDX0σc1,−σ + VAa
†
σcNσ + h.c.] , (3)

where |D0 > is the filled shell state of the Donor and
|Dσ > the state of a single hole and X0σ = |D0 >< Dσ|.
We choose ǫD above the LUMO, and ǫA to be within the
gap.

We compute HDA by first identifying the appropriate
two state system from diagonalizing with either: (1) the
DMRG approach, which is exact to within targeted nu-
merical precision [26], and (2) a version of the variational
wave function approach for magnetic impurities in met-
als pioneered by Varma and Yafet as well as Gunnarsson
and Schönhammer [15]. We build our variational states
by first diagonalizing the bridge with the non-interacting
A “impurity” included, and then employ the Ansatz:

|ψ >= A[|D0 > +
∑

jσ

αjb
†
jσ|D − σ >]|BA > (4)

where bjσ creates an electron in orbital j of the bridge-A
system, αj are variational coefficients, and the particle-
hole excitations are controlled both by the spin degen-
eracy Ns (here Ns = 2) and the bridge gap. As is
well known [14], each added particle-hole excitation con-
tributes a term of relative order 1/Ns to the energy. This
variational ansatz does an excellent job of describing the
Kondo state in metals (the second term captures the
screening of the local moment, and as such is nonper-
turbative as opposed to, e.g., direct expansion in U or
Möller-Plesset methods). Because of the Hilbert-Space
truncation associated with large U , the above wave func-
tion cannot be reduced to a single determinant by a uni-
tary transformation. Hence, for our model, DMRG gives
an “exact configuration interaction” solution while the
variational approach provides a physically motivated ba-
sis set reduction solution. For the purposes of calculating
HDA, the methods agree exceedingly well.

Given the two lowest “adiabiatic” eigenstates, we next
identify the out-of-equilibrium “diabatic” states corre-
sponding to the excited electron predominantly localized
to the left (D) side, or right (A) side. The Generalized
Mulliken-Hush method [27] accomplishes this by finding,
within the two-state space, the eigenstates for the elec-
tric dipole operator, which maximally localize the charge
to left or right. HDA is then approximated by the off-
diagonal matrix element of the two-state Hamiltonian in
the dipole-diagonal basis.

Our results for HDA vs. bridge length N are shown in
Fig. 2(a), where we have set VD = VA for convenience,
and chosen ǫD well above the LUMO, and VD is of order t
[28]. We note the following features of our curves: (i) for
short distances, HDA scales with VDVA, perturbatively,
so that stronger initial coupling yields stronger tunneling.
On the other hand, for large distances, the weaker VD

gives better tunneling, because the more loosely bound
KS cloud has better overlap on the distant A complex.
(ii) By taking the bridge spacing to be of the order of 3Å
as in DNA, the slope for our curve with VD = 0.75t at
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long distances corresponds to β ≈ 0.1Å−1, and this corre-
sponds to a binding energy of the order of 0.05-0.2 eV (see
Fig. 3). Obviously our model is too simple to realistically
describe CT in DNA; rather, we stess the ready achiev-
ment of small β values. (iii) The agreement between the
DMRG calculations (x’s) and variational (lines) is quanti-
tatively excellent in the long distance regime where HDA

is quite small, and good in the short distance regime.
Hence, our variational approach is a very useful, accu-
rate, physically motivated basis set reduction scheme for
this model. (iv) By varying t′, VD, ǫ̃D we can easily ob-
tain the typical protein results (β ≃ 1Å−1) in our model.

Analytic solutions are possible in two limits. First, in a
continuum limit in which the D/A complexes are placed
at separation Na in a one-dimensional wire, and EB <<

t′, we find that HDA ∼ E
1/4

B exp(−
√

2m∗EBNa/h̄),
with effective mass m∗ = h̄2t′/[2(t2 − t′2)a2] and the
Kondo binding energy EB = V 4

D/(ǫ0|ǫD − 2t′|2), with
ǫ0 = h̄2/(8m∗a2). The prefactor reflects a “slave bo-
son” renormalization of the matrix element VD [29], and
the exponent arises from A/KS overlap. Thus there is a
maximum HDA for a given bridge length, though this is
practically relevant for only long bridges given the weak
prefactor dependence upon EB . Second, for a discrete
bridge HDA is expressed approximately as

|HDA| ≈ |VDVA

∑

k

ψ(k, 1)ψ∗(k,N)

ǫk − 2t′ + EB
| (5)

where ψ(k, i) is the wave function amplitude at site i
of a bridge-only conduction orbital of energy ǫk (no A
complex). This describes the propagation from the D
complex to bridge site 1, then to bridge site N and onto
the A complex (hole transfer processes are also possible
but less dominant).

Given the semiconducting character of the bridge, the
dielectrically screened Coulomb interaction between the
D hole and the bridge electron is of manifest importance.
This is modeled by the interaction

HC = −
N+1
∑

j=1

e2

ǫja
[
∑

σ

Xσσ]nj (6)

where Xσσ = |Dσ >< Dσ|, and ni is the electron oc-
cupancy at site i, and ǫ is the high frequency dielectric
constant. There are two important effects: (i) For suffi-
ciently small interaction (Vc = e2/(ǫa) ≤ 1 eV in prac-
tice), the modification of the bridge wave functions leads
to a multiplication of VD by < BA|B̄A > where |B̄A > is
the filled valence sea in the presence of the D hole. This
is directly analogous to the orthogonality catastrophe of
the core level x-ray absorption problem. The effects of
this on HDA are shown in Fig. 2(b). Effectively, small
Vc reduces VD and thus enhances HDA. (ii) For larger
Vc, Coulomb binding overtakes Kondo coupling, and the
stronger binding reduces HDA.

Finally, we introduce coupling to local vibrational
modes of the D/A complexes. We make the harmonic
approximation for the phonons, and treat the displace-
ments classically, adding to our model

Ĥel,ph = λ
∑

σ

(xDXσσ + xAa
†
σaσ) (7)

where λ is the electron-phonon coupling constant, xD

and xA are the nuclear coordinates, and we add a har-
monic potential K

2

(

x2
D + x2

A

)

. After the substitu-
tion xD/A → λ/Kx̃D/A, with dimensionless coordinates
x̃D/A, the Hamiltonian depends only on a single parame-
ter λ2/K. By neglecting electron-phonon coupling within
the bridge [30], we have calculated the total electronic en-
ergy of the groundstate and first excited state (two state
model) as a function of the nuclear coordinates. These
constitute the Born-Oppenheimer potential energy sur-
faces (PES) for the nuclear motion of the two Ander-
son impurities. The resonance splitting at the transition
state is 2HDA [1].

In Fig. 3, we compare with the electron-only Mulliken-
Hush approach. Like the Coulomb interaction discussed
previously, coupling to phonons leads to an enhanced CT
rate. The Mulliken-Hush result corresponds to the limit
of vanishing phonon coupling. In the perturbative regime
λ2/K << 1, we find a linear dependence of ln(HDA/t) on
λ2/K. We can roughly explain this by replacing ǫD in
the asymptotic, electron-only problem with renormalized
energy level ǫ̃D = ǫD + λ2/Kx̃D and expanding lnHDA

to linear order in λ2/K. This result varies little with x̃D,
since the reaction path approximately follows x̃A.
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FIG. 1. Dynamics of Kondo bound state (KS) mediated
CT. Photolysis leads to the excited state D0 from which an
electron is transferred to the bridge leaving a remnant D

hole spin. For sufficiently rapid KS formation, KS mediated
CT (1) is more rapid and likely than luminescence (2) or
phonon-radiative decay to the acceptor (3).
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bridge-donor coupling. Lines: variational method. Symbols:
DMRG approach. Dotted line: ǫD and VD have been reduced
so as to yield the same continuum limit Kondo binding en-
ergy as the solid line. (B) Effect of Coulomb interaction Vc

between the bridge electron and remnant D hole.
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