3,782 research outputs found

    All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Full text link
    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken from 234 days between June 2016 to February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of 2.49±0.01-2.49\pm0.01 prior to a break at (45.7±0.1(45.7\pm0.1) TeV, followed by an index of 2.71±0.01-2.71\pm0.01. The spectrum also respresents a single measurement that spans the energy range between direct detection and ground based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review

    Long-term effect of 2 intensive statin regimens on treatment and incidence of cardiovascular events in familial hypercholesterolemia : The SAFEHEART study

    Get PDF
    Funding: This study was supported by Fundación Hipercolesterolemia Familiar; Grant G03/181 Grant 08-2008 Centro Nacional de Investigaci?n Cardiovascular (CNIC).Background: Maximal doses of potent statins are the basement of treatment of familial hypercholesterolemia (FH). Little is known about the use of different statin regimens in FH. Objectives: The objectives of the study were to describe the treatment changes and low-density lipoprotein cholesterol (LDL-C) goal achievement with atorvastatin (ATV) and rosuvastatin (RV) in the SAFEHEART cohort, as well as to analyze the incidence of atherosclerotic cardiovascular events (ACVEs) and changes in the cardiovascular risk. Methods: SAFEHEART is a prospective follow-up nationwide cohort study in a molecularly defined FH population. The patients were contacted on a yearly basis to obtain relevant changes in life habits, medication, and ACVEs. Results: A total of 1939 patients were analyzed. Median follow-up was 6.6 years (5-10). The estimated 10-year risk according the SAFEHEART risk equation was 1.61 (0.67-3.39) and 1.22 (0.54-2.93) at enrollment for ATV and RV, respectively (P <.001). There were no significant differences at the follow-up: 1.29 (0.54-2.82) and 1.22 (0.54-2.76) in the ATV and RV groups, respectively (P =.51). Sixteen percent of patients in primary prevention with ATV and 18% with RV achieved an LDL-C <100 mg/dL and 4% in secondary prevention with ATV and 5% with RV achieved an LDL-C <70 mg/dL. The use of ezetimibe was marginally greater in the RV group. One hundred sixty ACVEs occurred during follow-up, being its incidence rate 1.1 events/100 patient-years in the ATV group and 1.2 in the RV group (P =.58). Conclusion: ATV and RV are 2 high-potency statins widely used in FH. Although the reduction in LDL-C levels was greater with RV than with ATV, the superiority of RV for reducing ACVEs was not demonstrated

    Constraining the pˉ/p\bar{p}/p Ratio in TeV Cosmic Rays with Observations of the Moon Shadow by HAWC

    Get PDF
    An indirect measurement of the antiproton flux in cosmic rays is possible as the particles undergo deflection by the geomagnetic field. This effect can be measured by studying the deficit in the flux, or shadow, created by the Moon as it absorbs cosmic rays that are headed towards the Earth. The shadow is displaced from the actual position of the Moon due to geomagnetic deflection, which is a function of the energy and charge of the cosmic rays. The displacement provides a natural tool for momentum/charge discrimination that can be used to study the composition of cosmic rays. Using 33 months of data comprising more than 80 billion cosmic rays measured by the High Altitude Water Cherenkov (HAWC) observatory, we have analyzed the Moon shadow to search for TeV antiprotons in cosmic rays. We present our first upper limits on the pˉ/p\bar{p}/p fraction, which in the absence of any direct measurements, provide the tightest available constraints of 1%\sim1\% on the antiproton fraction for energies between 1 and 10 TeV.Comment: 10 pages, 5 figures. Accepted by Physical Review

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(G)b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any GF\mathcal G \subsetneq \mathcal F and every 0id/210 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these d/2\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C(K)C(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure

    Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors

    Get PDF
    [Abstract] The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or metabolic networks. However, the applications are not restricted to the world of molecules and can be extended to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, the development of the field of Artificial Intelligence has led to the formulation of computational algorithms whose design is based on the structure and functioning of networks of biological neurons. These algorithms, called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical parameters that encode information of the network (for example centralities/node descriptors) can be used as inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the molecular structure of drugs and to study complex networks. In this work, we explore for the first time the possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of order kth (Wk). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, we calculated the Wk(i) values for a very high number of nodes (>100,000) in more than 100 different complex networks using the software MI-NODES. These networks were grouped according to the field of application. Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, we analyzed other biological and legal and social networks. These include the Interaction Web Database Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law Network (SFLN). The calculated Wk(i) values were used as inputs for different ANNs in order to discriminate correct node connectivity patterns from incorrect random patterns. The MIANN models obtained present good values of Sensitivity/Specificity (%): MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). These preliminary results are very promising from the point of view of a first exploratory study and suggest that the use of these models could be extended to the high-throughput re-evaluation of connectivity in known complex networks (collation)

    The Dusty Tori of Nearby QSOs as Constrained by High-Resolution Mid-IR Observations

    Get PDF
    We present mid-infrared (MIR; 7.5–13.5 μm) imaging and spectroscopy observations obtained with the CanariCam (CC) instrument on the 10.4-m Gran Telescopio CANARIAS for a sample of 20 nearby, MIR bright and X-ray luminous quasi-stellar objects (QSOs). We find that for the majority of QSOs the MIR emission is unresolved at angular scales ∼0.3 arcsec, corresponding to physical scales ≲ 600 pc. We find that the higher-spatial resolution CC spectra have similar shapes to those obtained with Spitzer/IRS, and hence we can assume that the spectra are not heavily contaminated by extended emission in the host galaxy. We thus take advantage of the higher signal-to-noise ratio Spitzer/IRS spectra, as a fair representation of the nuclear emission, to decompose it into a combination of active galactic nuclei (AGN), polycyclic aromatic hydrocarbon (PAH) and stellar components. In most cases, the AGN is the dominant component, with a median contribution of 85 per cent of the continuum light at MIR (5–15 μm) within the IRS slit. This IR AGN emission is well reproduced by clumpy torus models. We find evidence for significant differences in the parameters that describe the dusty tori of QSOs when compared with the same parameters of Seyfert 1 and 2 nuclei. In particular, we find a lower number of clouds (N0 ≲ 12), steeper radial distribution of clouds (q ∼ 1.5–3.0) and clouds that are less optically thick (τV ≲ 100) than in Seyfert 1, which could be attributed to dusty structures that have been partially evaporated and piled up by the higher radiation field in QSOs. We find that the combination of the angular width σtorus, viewing angle i, and number of clouds along the equatorial line, N0, produces large escape probabilities (Pesc \u3e 2 per cent) and low geometrical covering factors (f2 ≲ 0.6), as expected for AGN with broad lines in their optical spectra

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    Search for very-high-energy emission from Gamma-ray Bursts using the first 18 months of data from the HAWC Gamma-ray Observatory

    Full text link
    The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an extensive air shower detector operating in central Mexico, which has recently completed its first two years of full operations. If for a burst like GRB 130427A at a redshift of 0.34 and a high-energy component following a power law with index -1.66, the high-energy component is extended to higher energies with no cut-off other than from extragalactic background light attenuation, HAWC would observe gamma rays with a peak energy of \sim300 GeV. This paper reports the results of HAWC observations of 64 gamma-ray bursts (GRBs) detected by Swift\mathit{Swift} and Fermi\mathit{Fermi}, including three GRBs that were also detected by the Large Area Telescope (Fermi\mathit{Fermi}-LAT). An ON/OFF analysis method is employed, searching on the time scale given by the observed light curve at keV-MeV energies and also on extended time scales. For all GRBs and time scales, no statistically significant excess of counts is found and upper limits on the number of gamma rays and the gamma-ray flux are calculated. GRB 170206A, the third brightest short GRB detected by the Gamma-ray Burst Monitor on board the Fermi\mathit{Fermi} satellite (Fermi\mathit{Fermi}-GBM) and also detected by the LAT, occurred very close to zenith. The LAT measurements can neither exclude the presence of a synchrotron self-Compton (SSC) component nor constrain its spectrum. Instead, the HAWC upper limits constrain the expected cut-off in an additional high-energy component to be less than 100 GeV100~\rm{GeV} for reasonable assumptions about the energetics and redshift of the burst.Comment: 19 pages, 6 figures, published in Ap
    corecore