3,134 research outputs found
Pre-enriched, not primordial ellipticals
We follow the chemical evolution of a galaxy through star formation and its
feedback into the inter-stellar medium, starting from primordial gas and
allowing for gas to inflow into the region being modelled. We attempt to
reproduce observed spectral line-strengths for early-type galaxies to constrain
their star formation histories. The efficiencies and times of star formation
are varied as well as the amount and duration of inflow. We evaluate the
chemical enrichment and the mass of stars made with time. Single stellar
population (SSP) data are then used to predict line-strengths for composite
stellar populations. The results are compared with observed line-strengths in
ten ellipticals, including some features which help to break the problem of
age-metallicity degeneracy in old stellar populations. We find that the
elliptical galaxies modelled require high metallicity SSPs (>3 x solar) at
later times. In addition the strong lines observed cannot be produced by an
initial starburst in primordial gas, even if a large amount of inflow is
allowed for during the first few x 10E+8 years. This is because some
pre-enrichment is required for lines in the bulk of the stars to approach the
observed line-strengths in ellipticals.Comment: 18 pages, 8 figures, Latex, accepted for publication in MNRA
Constraining the Star Formation Histories of Spiral Bulges
Long-slit spectroscopic observations of line-strengths and kinematics made
along the minor axes of four spiral bulges are reported. Comparisons are made
between central line-strengths in spiral bulges and those in other
morphological types. The bulges are found to have central line-strengths
comparable with those of single stellar populations (SSPs) of approximately
solar abundance or above. Negative radial gradients are observed in
line-strengths, similar to those in elliptical galaxies. The bulge data are
consistent with correlations between Mg2, and central velocity dispersion
observed in elliptical galaxiess. In contrast to elliptical galaxies, central
line-strengths lie within the loci defining the range of and Mg2 achieved
by Worthey's (1994) solar abundance ratio, SSPs. The implication of solar
abundance ratios indicates differences in the star formation histories of
spiral bulges and elliptical galaxies. A ``single zone with in- fall'' model of
galactic chemical evolution, using Worthey's (1994) SSPs, is used to constrain
possible star formation histories in our sample. We show that , Mg2 and
Hbeta line-strengths observed in these bulges cannot be reproduced using
primordial collapse models of formation but can be reproduced by models with
extended in-fall of gas and star formation (2-17 Gyr) in the region modelled.
One galaxy (NGC 5689) shows a central population with luminosity weighted
average age of ~5 Gyr, supporting the idea of extended star formation.
Kinematic substructure, possibly associated with a central spike in
metallicity, is observed at the centre of the Sa galaxy NGC 3623.Comment: 14 pages. MNRAS latex file. Accepted for publication in MNRA
Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone
We perform idealized numerical simulations of magnetic buoyancy instabilities in three dimensions, solving the equations of compressible magnetohydrodynamics in a model of the solar tachocline. In particular, we study the effects of including a highly simplified model of magnetic flux pumping in an upper layer (‘the convection zone’) on magnetic buoyancy instabilities in a lower layer (‘the upper parts of the radiative interior – including the tachocline’), to study these competing flux transport mechanisms at the base of the convection zone. The results of the inclusion of this effect in numerical simulations of the buoyancy instability of both a preconceived magnetic slab and a shear-generated magnetic layer are presented. In the former, we find that if we are in the regime that the downward pumping velocity is comparable with the Alfvén speed of the magnetic layer, magnetic flux pumping is able to hold back the bulk of the magnetic field, with only small pockets of strong field able to rise into the upper layer.
In simulations in which the magnetic layer is generated by shear, we find that the shear velocity is not necessarily required to exceed that of the pumping (therefore the kinetic energy of the shear is not required to exceed that of the overlying convection) for strong localized pockets of magnetic field to be produced which can rise into the upper layer. This is because magnetic flux pumping acts to store the field below the interface, allowing it to be amplified both by the shear and by vortical fluid motions, until pockets of field can achieve sufficient strength to rise into the upper layer. In addition, we find that the interface between the two layers is a natural location for the production of strong vertical gradients in the magnetic field. If these gradients are sufficiently strong to allow the development of magnetic buoyancy instabilities, strong shear is not necessarily required to drive them (cf. previous work by Vasil & Brummell). We find that the addition of magnetic flux pumping appears to be able to assist shear-driven magnetic buoyancy in producing strong flux concentrations that can rise up into the convection zone from the radiative interior
Oscillations and secondary bifurcations in nonlinear magnetoconvection
Complicated bifurcation structures that appear in nonlinear systems governed by partial differential equations (PDEs) can be explained by studying appropriate low-order amplitude equations. We demonstrate the power of this approach by considering compressible magnetoconvection. Numerical experiments reveal a transition from a regime with a subcritical Hopf bifurcation from the static solution, to one where finite-amplitude oscillations persist although there is no Hopf bifurcation from the static solution. This transition is associated with a codimension-two bifurcation with a pair of zero eigenvalues. We show that the bifurcation pattern found for the PDEs is indeed predicted by the second-order normal form equation (with cubic nonlinearities) for a Takens-Bogdanov bifurcation with Z2 symmetry. We then extend this equation by adding quintic nonlinearities and analyse the resulting system. Its predictions provide a qualitatively accurate description of solutions of the full PDEs over a wider range of parameter values. Replacing the reflecting (Z2) lateral boundary conditions with periodic [O(2)] boundaries allows stable travelling wave and modulated wave solutions to appear; they could be described by a third-order system
Sediment Denitrification In The Gulf Of Mexico Zone Of Hypoxia
The largest zone of anthropogenic bottom water hypoxia in the Western Hemisphere occurs seasonally in the northern Gulf of Mexico between the Mississippi River delta and the coast of eastern Texas. This zone of hypoxia reaches its greatest extent in the summer months and is a consequence of seasonal stratification of the water column combined with the decomposition of organic matter derived from accelerated rates of primary production. This enhanced productivity is driven primarily by the input of inorganic nitrogen from the Mississippi River. There are 3 likely sinks for fixed nitrogen within this zone of hypoxia: sequestration in the sediment, dispersion and dilution into the Gulf of Mexico, and denitrification. We assessed potential denitrification rates at 7 stations in the zone of hypoxia during the summer of 1999. Those data are compared with bottom water nitrate, ammonium and dissolved oxygen (DO) concentrations. No denitrification was observed in the water column. Denitrification potential rates in the surface sediments were unexpectedly low and ranged between 39.8 and 108.1 mumol m(-1) h(-1). The highest rates were observed at stations with bottom water DO concentrations between 1 and 3 mg l(-1). Denitrification activity was significantly lower at stations where DO was lower than 1 mg l(-1) or higher than 3 mg l(-1). Nutrient data for these stations demonstrate that as anoxia is approached, the dominant species of nitrogen shifts from nitrate to ammonium. The shift in nitrogen species suggests competition between microbial populations in the sediment community. The lower denitrification rates at stations with bottom water DO l(-1) may be due to nitrate limitation or an increase in the competitive advantage of microorganisms capable of dissimilatory nitrate reduction to ammonium (DNRA). Suppression of denitrification at low DO by any mechanism will increase the residence time of bioavailable nitrogen. This trend could act as a positive feedback mechanism in the formation of hypoxic bottom waters
Numerical Simulation of the Aircraft Wake Vortex Flowfield
The near wake vortex flowfield from a NACA0012 half-wing was simulated using a fully unstructured Navier-Stokes flow solver in three dimensions at a chord Reynolds number of 4.6 million and a Mach number of approximately 0.15. Several simulations were performed to examine the effect of boundary conditions, mesh resolution and turbulence scheme on the formation of wingtip vortex and its downstream propagation. The standard Spalart-Allmaras turbulence model was compared with the Dacles-Mariani and Spalart-Shur corrections for rotation and curvature effects. The simulation results were evaluated using the data from experiment performed at NASA Ames' 32in x 48in low speed wind tunnel
Convective intensification of magnetic fields in the quiet Sun
Kilogauss-strength magnetic fields are often observed in intergranular lanes at the photosphere in the quiet Sun. Such fields are stronger than the equipartition field B_e, corresponding to a magnetic energy density that matches the kinetic energy density of photospheric convection, and comparable with the field B_p that exerts a magnetic pressure equal to the ambient gas pressure. We present an idealised numerical model of three-dimensional compressible magnetoconvection at the photosphere, for a range of values of the magnetic Reynolds number. In the absence of a magnetic field, the convection is highly supercritical and is characterised by a pattern of vigorous, time-dependent, “granular” motions. When a weak magnetic field is imposed upon the convection, magnetic flux is swept into the convective downflows where it forms localised concentrations. Unless this process is significantly inhibited by magnetic diffusion, the resulting fields are often much greater than B_e, and the high magnetic pressure in these flux elements leads to their being partially evacuated. Some of these flux elements contain ultra-intense magnetic fields that are significantly greater than B_p. Such fields are contained by a combination of the thermal pressure of the gas and the dynamic pressure of the convective motion, and they are constantly evolving. These ultra-intense fields develop owing to nonlinear interactions between magnetic fields and convection; they cannot be explained in terms of “convective collapse” within a thin flux tube that remains in overall pressure equilibrium with its surroundings
Analysis of the shearing instability in nonlinear convection and magnetoconvection
Numerical experiments on two-dimensional convection with or without a vertical magnetic field reveal a bewildering variety of periodic and aperiodic oscillations. Steady rolls can develop a shearing instability, in which rolls turning over in one direction grow at the expense of rolls turning over in the other, resulting in a net shear across the layer. As the temperature difference across the fluid is increased, two-dimensional pulsating waves occur, in which the direction of shear alternates. We analyse the nonlinear dynamics of this behaviour by first constructing appropriate low-order sets of ordinary differential equations, which show the same behaviour, and then analysing the global bifurcations that lead to these oscillations by constructing one-dimensional return maps. We compare the behaviour of the partial differential equations, the models and the maps in systematic two-parameter studies of both the magnetic and the non-magnetic cases, emphasising how the symmetries of periodic solutions change as a result of global bifurcations. Much of the interesting behaviour is associated with a discontinuous change in the leading direction of a fixed point at a global bifurcation; this change occurs when the magnetic field is introduced
The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence
A numerical model of isotropic homogeneous turbulence with helical forcing is
investigated. The resulting flow, which is essentially the prototype of the
alpha^2 dynamo of mean-field dynamo theory, produces strong dynamo action with
an additional large scale field on the scale of the box (at wavenumber k=1;
forcing is at k=5). This large scale field is nearly force-free and exceeds the
equipartition value. As the magnetic Reynolds number R_m increases, the
saturation field strength and the growth rate of the dynamo increase. However,
the time it takes to built up the large scale field from equipartition to its
final super-equipartition value increases with magnetic Reynolds number. The
large scale field generation can be identified as being due to nonlocal
interactions originating from the forcing scale, which is characteristic of the
alpha-effect. Both alpha and turbulent magnetic diffusivity eta_t are
determined simultaneously using numerical experiments where the mean-field is
modified artificially. Both quantities are quenched in a R_m-dependent fashion.
The evolution of the energy of the mean field matches that predicted by an
alpha^2 dynamo model with similar alpha and eta_t quenchings. For this model an
analytic solution is given which matches the results of the simulations. The
simulations are numerically robust in that the shape of the spectrum at large
scales is unchanged when changing the resolution from 30^3 to 120^3 meshpoints,
or when increasing the magnetic Prandtl number (viscosity/magnetic diffusivity)
from 1 to 100. Increasing the forcing wavenumber to 30 (i.e. increasing the
scale separation) makes the inverse cascade effect more pronounced, although it
remains otherwise qualitatively unchanged.Comment: 21 pages, 26 figures, ApJ (accepted
Magnetic diffusivity tensor and dynamo effects in rotating and shearing turbulence
The turbulent magnetic diffusivity tensor is determined in the presence of
rotation or shear. The question is addressed whether dynamo action from the
shear-current effect can explain large-scale magnetic field generation found in
simulations with shear. For this purpose a set of evolution equations for the
response to imposed test fields is solved with turbulent and mean motions
calculated from the momentum and continuity equations. The corresponding
results for the electromotive force are used to calculate turbulent transport
coefficients. The diagonal components of the turbulent magnetic diffusivity
tensor are found to be very close together, but their values increase slightly
with increasing shear and decrease with increasing rotation rate. In the
presence of shear, the sign of the two off-diagonal components of the turbulent
magnetic diffusion tensor is the same and opposite to the sign of the shear.
This implies that dynamo action from the shear--current effect is impossible,
except perhaps for high magnetic Reynolds numbers. However, even though there
is no alpha effect on the average, the components of the alpha tensor display
Gaussian fluctuations around zero. These fluctuations are strong enough to
drive an incoherent alpha--shear dynamo. The incoherent shear--current effect,
on the other hand, is found to be subdominant.Comment: 12 pages, 13 figures, improved version, accepted by Ap
- …