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1. INTRODUCTION

Sunspots are dark because normal convection is suppressed by a strong magnetic field, which allows
only weaker time-dependent motion. Attempts to explain this effect led to the systematic study of
magnetoconvection, revealing a complicated pattern of oscillatory and stationary solutions. Indeed,
the subject has now outgrown its original astrophysical motivation and can be investigated as an
example of competition between stabilizing and destabilizing mechanisms, which gives rise to a rich
variety of dynamical behaviour (see Hughes and Proctor, 1988; Weiss, 1991; Proctor, 1992 and
references therein).

In the astrophysically relevant regime, where the field is strong and the magnetic diffusivity
is much smaller than the (radiative) thermal diffusivity, there are two primary bifurcations from the
trivial static solution: in idealized models, convection sets in at an oscillatory (Hopf) bifurcation,
which is followed by a stationary (pitchfork) bifurcation as the rate of heating (measured by a
Rayleigh number R) is increased. By varying a second parameter, such as the aspect ratio, it
is possible to locate a bifurcation of codimension two, where the Hopf and pitchfork bifurcations
coincide. Such multiple bifurcations are important, for nonlinear behaviour in their neighbourhoods
can be investigated analytically; moreover, they act as organizing centres for a large region of
parameter space. In cases that have previously been discussed, the branch of nonlinear periodic
solutions terminates on the branch of steady solutions that emerges from the primary pitchfork
bifurcation, either in a secondary Hopf bifurcation or in a heteroclinic bifurcation (Proctor and
Weiss, 1982). Such oscillations only exist when the pitchfork is preceded by a Hopf bifurcation as
R is increased.

Nonlinear behaviour can also be explored by solving the appropriate partial differential equa-
tions (PDEs) numerically in some idealized configuration. Numerical experiments on two-dimensional
compressible magnetoconvection revealed a feature that had not been anticipated. As the aspect
ratio was decreased beyond the codimension-two point, nonlinear oscillations persisted, although the
primary Hopf bifurcation had disappeared. Closer investigation showed that after being created in
the pitchfork bifurcation, the steady solutions lost stability in a secondary Hopf bifurcation, so giving
rise to the prominent oscillatory solutions (Weiss et al., 1990). This scenario is not a consequence
of compressibility and could also be found in Boussinesq magnetoconvection.

This particular example illustrates an important effect: a system with a propensity to oscillate
may exhibit periodic behaviour over a wide parameter range although linear theory provides no
indication of a primary Hopf bifurcation from the trivial solution as a single stability parameter is
varied. The purpose of this paper is to analyse the mechanism that leads to such behaviour in double
convection. We shall show how the results of numerical experiments on nonlinear magnetoconvection
can be related to the properties of low-order systems of ordinary differential equations (ODEs)
that accurately model the full PDEs. Indeed, the appropriate normal form equation (Arnol’d,
1983; Guckenheimer and Holmes, 1983) shows that if the primary Hopf bifurcation is subcritical
on one side of the codimension-two bifurcation then, on the other side, there must be a branch
of stable oscillatory solutions emerging from a supercritical secondary Hopf bifurcation. Thus this
problem provides a fine demonstration of the power of nonlinear dynamics in interpreting numerical
experiments.

We shall confine our attention to two-dimensional compressible magnetoconvection in a strongly
stratified layer (as a model of behaviour in the umbra of a sunspot). The governing PDEs are given
in the next section, where linear theory is used to calculate the critical value, A, of the aspect
ratio A at the codimension-two bifurcation. Previous computations, showing the appearance of a
secondary Hopf bifurcation, (Weiss et al., 1990) are also summarized. In Section 3 we present new
results, obtained by integrating the PDEs numerically, for values of A on either side of A.. These
numerical experiments show that the secondary Hopf bifurcation (for A < X.) is associated with a
subcritical primary Hopf bifurcation (for A > A.). This behaviour is related to a second-order system
of ODEs (the amplitude equations) in Section 4. We show first that the normal form equation for
a Takens—Bogdanov bifurcation with Z5 symmetry predicts behaviour similar to that found for the
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PDEs; then we explore the consequences of including a fifth-order correction in the amplitude equa-
tions. In Section 5 we return to the PDEs and confirm that the oscillatory branches terminate in a
final Hopf bifurcation from the branch of steady solutions, as predicted by the corrected amplitude
equations. The bifurcation structure is, however, complicated by the appearance of stable travelling
wave as well as standing wave solutions (cf. Hurlburt et al., 1989). The role of travelling waves is
clarified by reference to appropriately modified amplitude equations in Section 6. The implications
of our results are summarized in the final section.

2. THE SECONDARY HOPF BIFURCATION IN COMPRESSIBLE MAGNETOCONVECTION

We shall consider an idealized model of two-dimensional fully compressible convection in a perfect
monatomic gas occupying the region {0 < z < A;z0 < z < 29 + 1}, with z increasing downwards,
in the presence of an imposed vertical magnetic field. Then there is a static solution corresponding
to a polytrope of index m, with a density contrast x = [(zo + 1)/20]™. The velocity u = (u,0,w),
magnetic field B = (B, 0, B,), density p, pressure P and temperature T satisfy the nondimensional
equations

0

a(pu) = —V.(puu+ FBB) — V(P + L F|BJ?) + (m + 1)pz + V., (1)
0B s
EZVX(UXB)-FC()KV B, VBZO, (2)
op B
5= Vilew,  P=Tp, (3)

0
5 P17/ (v = 1) + 3[ul® = (m+1)2] + 3 F[BJ*}
==VAoT/(y = 1) + 5lul* = (m + 1)z]u
+FBx (uxB—(KV xB - KVT +u.r}, 4)
where v = 5/3 and the viscous stress tensor
Tij = ak(aui/amj + Ouj/0x; — géijauk/amk) (5)

(Hurlburt and Toomre, 1988; Hurlburt et al., 1989; Weiss et al., 1990). Here F' is a measure of the
magnetic energy density, K is the dimensionless thermal conductivity, o is the Prandt] number, and
(o is the ratio of the magnetic to the thermal diffusivity at the top of the layer. The Chandrasekhar

number
Q= F[oGQK?, (6)
and the local Rayleigh number
R(z) =77 (m + D[ = m(y = ] (0K>25™), (7)
while the local diffusivity ratio
¢(2) = Go(z/20)™. (8)

We shall define a particular configuration by the values R = R(2), ¢ = ((2), where 2 = z9 + 1/2,
calculated at the middle of the layer.

The system (1)—(4) is solved subject to the boundary conditions
T(z,z0,t) = 20, T(z,z0 4+ 1,t) = 20 + 1, (9)

w=0u/0z=DB, =0 at z = 29,20 + 1. (10)
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The total magnetic flux across the layer is fixed and equal to that for a uniform unit field, while the
lateral boundary conditions are either chosen to be periodic, so that

T(0,z,t) =T(\ z,t) etc., (11)
or else correspond to reflection symmetry about sidewalls, so that
u=0w/0x =B, =0T /0x =0p/dx =0 at x =0, A. (12)

The boundary conditions (11) and (12) are described as having O(2) and Z symmetry, respectively.

For the numerical experiments described here we adopt the parameter values used by Weiss
et al. (1990, henceforth referred to as Paper I). First we choose a model atmosphere with zp = 0.1
and m = 1, so that x = 11. Then we set ¢ = 1 and { = 0.6, so that 0.1 < ¢ < 1.1, favouring
oscillatory behaviour. Finally, we fix the Chandrasekhar number at ¢ = 2000, corresponding to a
strong magnetic field. That leaves only two parameters to be varied, the Rayleigh number R and
the aspect ratio A. Choosing R fixes the value of K, from (7), and hence that of F', from (6). Note,
however, that the plasma beta at the middle of the layer,

B = 2" /(F2) = 3R/2000, (13)

varies with the Rayleigh number. For the runs discussed here, 8 > 60 and the effects of compress-
ibility are small.

The system (1)—(4), with boundary conditions (9), (10) and (11) or (12), possesses a static
solution with u =0 and B = (0,0, 1) for all values of R, and is symmetric with respect to reversals
of the sense of motion. Linear stability theory can be used to locate primary bifurcations from
this trivial solution (Cattaneo, 1984). For small values of A, steady state (SS) convection sets in
at a pitchfork bifurcation when R = R(®) but for A sufficiently large there is a Hopf bifurcation at
R = R followed by a stationary (pitchfork) bifurcation at R = R(®) (R(¢) > R(?), as shown in
Figure 2 of Paper I. The bifurcation of codimension two, where R(®) = R(¢)  occurs at the critical
point (A;, R.) in the (A, R)-parameter plane, where . = 0.683, R. = 53100.

Behaviour near the Hopf bifurcation depends on the choice of lateral boundary conditions.
With the boundary conditions (12), which prohibit flow across the sidewalls, a single branch of
periodic oscillatory (standing wave, or SW) solutions emerges from the Hopf bifurcation. With the
less restrictive periodic boundary conditions (11), however, there is in addition a pair of (leftward
and rightward) travelling wave (TW) solutions on a branch emerging from the same bifurcation.
To determine whether standing waves or travelling waves are preferred it is necessary to enter the
weakly nonlinear domain (cf. Hurlburt et al., 1989).

Fully nonlinear solutions have to be obtained numerically. Our code uses a two-step Lax—
Wendroff finite-difference scheme (Graham, 1975; Hurlburt and Toomre, 1988; Hurlburt et al.,
1989) on a square mesh with either 30 or 60 intervals in the vertical direction. Paper I (Figures 5-7)
investigated behaviour for two values of A, with periodic lateral boundary conditions. For A\ = 4/3
there was a supercritical Hopf bifurcation giving rise to stable periodic solutions which persisted for
R > R®). For A = 2/3 (just below the value of \.) there was a supercritical pitchfork bifurcation
at R(®) = 53850, followed by stable steady solutions (see Figure 9a of Paper I). These underwent
a supercritical Hopf bifurcation at R = 54300; after this secondary bifurcation these were stable
periodic oscillations which persisted up to R = 100000. In this paper we study the development of
this oscillatory branch and show how it can be related to behaviour near the multiple bifurcation at
the critical point (A, Re)-



(a) (b)
R =58900 SW

R = 40850

R= 41190 R= 55250
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- ————- e e I >
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Figure 1. Summary of numerical experiments near the critical point. (a) A = 24/30;
(b) A =19/30. In this and subsequent bifurcation diagrams, solid lines indicate stable
(steady or oscillatory) solutions, while broken lines indicate unstable solutions. Filled
circles represent Hopf (H), pitchfork (pf) or saddle-node (s-n) bifurcations; open
circles represent homoclinic (h) bifurcations.

3. NONLINEAR OSCILLATIONS

We have computed new solutions of the PDEs for values of the aspect ratio that bracket the critical
value A, using periodic lateral boundary conditions (11). Since all stable solutions found were
either steady or standing wave solutions, results described in this section could equally well have
been obtained with the no-flux boundary conditions (12). To measure the vigour of convection we
evaluate the Nusselt number

_Fr — K(dT'/dz)aa _5Fr 4, (14)

K[1—(dT/dz)ea] K

where Fr is the total energy flux at z = zp and (dT'/dz)eq = (m+1)(y — 1)/ = 0.8 is the adiabatic
temperature gradient. Then (N — 1) is a measure of the efficiency of convection, normalized with
respect to the superadiabatic conductive flow.

As bifurcations are affected by discretization errors (Moore and Weiss, 1992), it is important
to keep the mesh interval fixed. For behaviour near the onset of convection it suffices to use 30
intervals vertically; then the particular aspect ratios chosen are dictated by the mesh. The critical
value A, = 0.683 corresponds to a wavenumber a. = 27/\. = 2.937. We first discuss behaviour
found for A = 24/30 = 0.8, corresponding to a wavenumber o« = 2.57 and then turn to results
for A = 19/30 = 0.633 (a = 3.16m), since the choice made for Paper I (A = 0.667, a = 3) is
uncomfortably close to the critical value.

Linear calculations show that when A = 0.8 there is a Hopf bifurcation at R(® = 41190,
followed by a pitchfork bifurcation at R(¢) = 51515. Using the nonlinear code, we have confirmed that
the trivial solution is stable for R < 41000. At R = 41000 small perturbations (with |N —1| < 0.005)
lead to periodic oscillations that decay exponentially. We have not attempted to compute nonlinear
solutions in the neighbourhood of the Hopf bifurcation, but for R = 41500 we find that the trivial
solution is unstable to growing oscillatory perturbations and there is a stable periodic solution with
1.005 < N < 1.034. As R is increased the oscillation grows monotonically in amplitude, so that the
periodic solution has 1.010 < N < 1.060 at R = 42000, and has 1.082 < N < 1.450 at R = 50000.

We also find subcritical oscillations. The trivial solution at R = 41000 has a basin of attraction
that is small: large perturbations eventually settle down to low-amplitude periodic oscillations with
1.0010 < N < 1.0059. Stable oscillations, with 1.00015 < N < 1.00096, can also be found for
R = 40900 but the oscillations decay for R < 40800. These results show that the Hopf bifurcation
is subcritical, as indicated schematically in Figure 1(a).
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Next we take A = 0.633, when the only primary bifurcation is a supercritical pitchfork at
R(®) = 55250. At R = 56000 there is a stable steady solution with N = 1.016 and trajectories
approach it monotonically. By R = 58000 there are decaying oscillations about a steady state with
N = 1.056 and at R = 58500 the steady solution, with NV = 1.07, is close to being unstable. At
R = 58700 there are periodic solutions with 1.01 < N < 1.125, corresponding to vacillation without
reversal of the motion. By R = 59000 there are oscillations with a very long period; the flow
reverses and 1.00 < N < 1.16. By R = 60000 the period has dropped by 40% and the amplitude
has risen so that 1.00 < N < 1.21. This sequence is illustrated in Figure 1(b): after the pitchfork
bifurcation there are two real negative eigenvalues on the stable steady branch, which merge and
become complex around R = 57000. The real parts of the pair change sign at a supercritical Hopf
bifurcation, near R = 58500, giving rise to a pair of vacillatory orbits about the unstable steady
solutions. These orbits merge in a global gluing (or biclinic) bifurcation at R &~ 58900, producing
an oscillation (symmetric about the origin) that grows continuously in amplitude as R is increased.

The results summarized in Figure 1 indicate what happens near the critical point. For A > A,
there is a subcritical primary Hopf bifurcation; instead of disappearing at the codimension-two
bifurcation, the Hopf bifurcation climbs up the steady branch for A < A.. At A = A, the oscillatory
branch swings round, so that the secondary Hopf bifurcation becomes supercritical and the whole
oscillatory branch is stable. In the next section we shall see that this transition is accurately
reproduced by second-order amplitude equations.

4. LOW-ORDER AMPLITUDE EQUATIONS

The behaviour we have just described is not peculiar to compressible magnetoconvection. Rather,
we expect it to be generic and associated with the bifurcation of codimension two at (A., R¢) in
systems with Z5 symmetry, when other parameters are appropriately chosen. The linear structure
involves only two eigenvalues, which are either complex conjugates or real. Thus linear behaviour
in the neighbourhood of the critical point is described by the second-order equation

4 — pa+va =0, (15)

where a measures the amplitude of the motion and the stability parameters u, v are linearly related
to R, A. The eigenvalues, corresponding to growth-rates of perturbations to the trivial solution, are
complex for v > iuz and there are two bifurcations of codimension one: a stationary bifurcation
at v = 0 and a Hopf bifurcation at ;1 = 0 for » > 0. The trivial solution is only stable for ;1 < 0
and ¥ > 0. When gy = v = 0 there is a double-zero eigenvalue. This multiple bifurcation — a
Takens-Bogdanov or ¢ (Arnéodo et al., 1985) bifurcation — has been extensively studied (Arnol’d,
1983; Guckenheimer and Holmes, 1983); as we shall see, the transition point for the PDEs is indeed
described by amplitude equations associated with this bifurcation.

4.1. The normal form equation

In this section we restrict our attention to solutions of the PDEs that have reflection symmetry
about the lateral boundaries, so that we are only concerned with interactions between steady and
standing wave solutions. Then behaviour near the codimension-two point is governed by the normal
form equation for a Takens—Bogdanov bifurcation with Z, symmetry:

i— (p+ka®)a+ (v +1a*)a =0, (16)

where k and [ are real constants (Takens, 1974; Arnol’d, 1977; Knobloch and Proctor, 1981; Arnol’d,
1983; Guckenheimer and Holmes, 1983; Guckenheimer and Knobloch, 1983). This equation has the
symmetry a — —a and possesses a trivial solution ¢ = 0 for all x4 and v. Hence the stationary
bifurcation at v = 0 is a pitchfork, giving rise to a pair of steady solutions with a = +(—v/1)/? for
vl < 0.



Figure 2. Bifurcation set of equation (17) (after Arnol’d 1983). The solid lines
indicate the parameter values where the behaviour of the equation undergoes a
qualitative change. Phase portraits in the (a,a)-plane are sketched in the regions in
between the bifurcation lines: stable and unstable periodic orbits are represented as
solid and dashed lines respectively. Bifurcation diagrams along the two slices (a) and
(b) are shown in Figure 3.

The case | < 0 describes subcritical steady convection and is relevant to thermosolutal con-
vection (e.g. Coullet and Spiegel, 1983; Proctor and Weiss, 1990) and to magnetoconvection when
A is large (Proctor and Weiss, 1982). We are interested in the case [ > 0, with supercritical steady
convection, which applies to magnetoconvection when A is sufficiently small (Knobloch and Proctor,
1981). The sign of k determines whether the Hopf bifurcation is supercritical or subcritical. Since
we are interested in a subcritical Hopf bifurcation, we take k& > 0. By rescaling a and ¢ we may
(without loss of generality) set k =1 = 1, so that (16) reduces to

i—(u+a*)a+ (v+a*)a=0. (17)

Note that by reversing the direction of time and changing the sign of u we can transform (17) into (16)
with k = —1,1 =1 (Arnol’d, 1983). This is a standard case, whose properties are well understood.
From the unfolding diagrams given, for example, by Arnol’d (1983, Figure 143), Guckenheimer and
Holmes (1983, Figure 7.3.9) or Guckenheimer and Knobloch (1983, Figure 1) we can easily construct
the corresponding diagram for equation (17). Figure 2 shows the bifurcation set in the (u,v)-plane,
together with sketched phase portraits in the (a, a)-plane. With v > 0 and u < 0, the stable trivial
solution is circled by an unstable periodic orbit. The nontrivial steady solutions, with a?> = —v, exist
only for v < 0. The lines in the third quadrant indicate, first, the pitchfork bifurcation (v = 0), then
a secondary Hopf bifurcation from the nontrivial steady solution at v = p (1 < 0) (in which stable
vacillatory orbits are created when a pair of complex eigenvalues cross the real axis), followed by a
global gluing bifurcation, where there is a pair of homoclinic connections at v = % p(-1lgpu<0).
Finally, there is a saddle-node bifurcation of the periodic orbit.
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Figure 3. Bifurcation diagrams along the two slices in Figure 2: a® as a function

of p. (a) p+v>0; (b) p+v <O0.

In order to appreciate the significance of this bifurcation diagram we need to consider the
codimension-one behaviour that would result from decreasing v and increasing p along the two lines
marked in Figure 2 (which correspond to increasing R for fixed A in the PDEs). This behaviour is
represented by the bifurcation diagrams in Figure 3, which show a? as a function of . The first
diagram, in Figure 3(a), shows a subcritical Hopf bifurcation, followed by a (subcritical) pitchfork
bifurcation; both the oscillatory and the steady branch are unstable. In Figure 3(b) there is a
supercritical pitchfork bifurcation, leading to stable solutions on the steady branch. Near the primary
bifurcation there are two real negative eigenvalues that merge, giving a complex pair whose real part
changes sign when p = v. The supercritical Hopf bifurcation gives rise to stable periodic solutions,
or orbits, that enclose the two unstable foci at a = +|v|'/2. These vacillatory orbits merge in the
gluing bifurcation to give a single stable oscillation of period P, which is symmetric about the origin
in the (a,a)-phase plane, so that a(t + £ P) = —a(t). Subsequently, the oscillations lose stability in
a saddle-node bifurcation.

It is only when k and [ are both positive in (16) that the Hopf bifurcation climbs up the steady
branch after the multiple bifurcation, as in Figure 3(b). For all other choices of k and [, only the
branch of steady solutions would be present when pu + v < 0. Although the bifurcation diagrams
in Figure 3 can be recognized within the more elaborate structures catalogued by Dangelmayr and
Knobloch (1987, cases I+ (a) and (b), II+ (a) and (b) of Figure 8) their significance had not hitherto
been appreciated. What we have shown is that, if the steady branch is supercritical (I > 0) and the
Hopf bifurcation is subcritical (k > 0) just before the codimension-two bifurcation, then there is a
branch of stable periodic orbits emerging from a secondary Hopf bifurcation, whose existence could
not be predicted from the linear equation (15).



4.2. Effects of adding fifth-order terms

The normal form equation (17) provides a qualitatively accurate description of behaviour in a small
(but finite) neighbourhood of the origin in the parameter plane i.e., for u?,v? < 1. Thus it cannot
represent the saddle-node bifurcation in Figure 1(a), through which the oscillatory branch acquires
stability. There is a systematic procedure which allows one to go further: the coefficients k& and [ of
the cubic terms in (16) may be regarded as small parameters so that, in order to treat behaviour near
the codimension-four bifurcation where p = v = k =1 = 0, it is necessary to add fifth-order terms
to the equation (cf. Dangelmayr, Armbruster and Neveling, 1985). This introduces an unwelcome
plethora of different cases, so we shall follow an alternative approach and simply add appropriate
fifth-order terms. Then the normal form equation (17) becomes

i— (u+a®—ma)a+ (v+a®+na*)a=0. (18)

The case with m = 0, n # 0, which does not include a saddle-node bifurcation on the subcritical
oscillatory branch, has already been analysed in detail (Dangelmayr et al., 1985; Knobloch and
Proctor 1988). We require m > 0, n > 0 so as to allow the oscillatory branch in Figure 3(a) to turn
round without significantly affecting the steady branch. This case, with n = 0, has been studied
independently by Rodriguez-Luis, Freire and Ponce (1991). Although a nonlinear transformation
relates the cases (m =0, n #0), (m # 0, n =0) and (m # 0, n # 0), the qualitative behaviour of
the nonlinear solutions may be different outside the immediate neighbourhood of (u,v) = (0, 0).

We have investigated the case m = 1, n = 1 numerically, using the AUTO continuation
package (Doedel, 1986). The bifurcation set is shown in Figure 4(a). In the region near the origin,
which is enlarged in Figure 4(b), the pattern follows the unfolding of the codimension-two bifurcation
in Figure 2 but non-local behaviour is quite different. A line of saddle-node bifurcations enters from
the quadrant with ¢ < 0, ¥ > 0 and meets the original line in a cusp. The lines of Hopf and
gluing bifurcations turn round for p sufficiently negative and eventually cross into the quadrant
with g > 0. When the line of gluing bifurcations crosses into the region where p > 0, which is
enlarged in Figure 4(c), the eigenvalues of the trivial solution change order, such that the positive
one becomes larger in magnitude than the negative one. It is these eigenvalues that determine the
stability of the periodic orbits involved in the gluing bifurcation: as periodic orbits approach the
gluing bifurcation, their periods go to infinity since the system spends more and more of its time near
the trivial solution. Here, the dynamics is dominated by the linear part of the flow (Guckenheimer
and Holmes, 1983). If the negative eigenvalue is larger in magnitude than the positive eigenvalue
(as it is when p < 0), then the periodic orbit approaching the homoclinic bifurcation must be stable:
contraction is stronger than expansion. Conversely, if the negative eigenvalue is smaller in magnitude
than the positive eigenvalue (as it is when p > 0), then the periodic orbit approaching the homoclinic
bifurcation must be unstable. Thus as the line of gluing bifurcations crosses from p < 0 to iz > 0 the
stability of the periodic orbits involved in the gluing bifurcation has to change at 4 = 0. This change
is associated with the appearance of a pair of lines of saddle-node bifurcations, which are created
in a cusp at p = 0 (Rodriguez-Luis et al., 1991). One of the two lines of saddle-node bifurcations
connects to the line of Hopf bifurcations at a point where the Hopf bifurcation changes from being
supercritical to subcritical. This connection cannot occur unless we have m and n both non-zero.
The solutions are profoundly affected by these changes; to illustrate them, we construct bifurcation
diagrams in Figure 5 corresponding to the arbitrarily chosen lines marked in the (u,v)-plane in
Figure 4(a).

In Figure 5(a), corresponding to a line that avoids the third quadrant, the subcritical Hopf
bifurcation is preceded by a saddle-node bifurcation, giving rise to stable periodic solutions. This
matches the behaviour found for the PDEs in Figure 1(a). Moreover, the oscillatory branch eventu-
ally rejoins the steady branch in a subcritical Hopf bifurcation, following a saddle-node bifurcation
and a gluing bifurcation. The steady solutions thus acquire stability. Behaviour immediately after
the codimension-two bifurcation is represented in Figure 5(b): the secondary Hopf bifurcation is
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Figure 4. (a) Numerically computed bifurcation set of equation (18) with m =1
and n = 1. Bifurcation diagrams along the dotted lines labelled (a)—(d) are shown
in Figure 5. For clarity, the line of Hopf bifurcations from the steady solutions and
the line of gluing bifurcations are shown as dashed lines. These lines cross near
(u,v) = (0.22,-2.6).
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Figure 4 (continued). (b) Detail of the bifurcation set of equation (18), near the
critical point. Compare with Figure 2. (c) Detail where the line of gluing bifurcations
crosses into the p > 0 half-plane.
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Figure 5. Bifurcation diagrams for equation (18): (a)—(d) along the four slices
marked in Figure 4(a); (e) is a combination of the left halves of (c)-(d) and the right
halves of (a)-(b), corresponding to a less-steep slice through Figure 4(a).
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supercritical and is followed, as in Figure 3(b), by a gluing bifurcation and a saddle-node bifurca-
tion. But now there is a second turning point on the oscillatory branch, which gains stability at
a saddle-node bifurcation that actually precedes the pitchfork bifurcation. Hence there are stable
periodic oscillations over a range extending from the initial to the final saddle-node bifurcations.

As the line in Figure 4 is shifted away from the multiple bifurcation the initial saddle-node
bifurcation moves across the bifurcation diagram, passing first the pitchfork bifurcation, then the
gluing bifurcation, and finally disappearing in a cusp singularity with the saddle-node bifurcation
that follows the gluing bifurcation (Figure 5(c)). Next, the other pair of saddle-node bifurcations
disappears in another cusp singularity. Eventually, there is only a single branch of stable peri-
odic orbits, linking two supercritical Hopf bifurcations, with two gluing bifurcations, as shown in
Figure 5(d). This bifurcation diagram is consistent with the behaviour found in numerical experi-
ments and shown in Figure 1(b). Shifting the line yet further away causes the two Hopf bifurcations
to approach until they eventually disappear, leaving only a stable steady branch.

It can be shown that the final Hopf bifurcation is always supercritical when n = 0. The
only qualitative effect of the term proportional to a® (n > 0) is to allow the final Hopf bifurcation
to become subcritical for v sufficiently negative and p positive. This allows, for instance, a bifur-
cation diagram with the appearance sketched in Figure 5(e): the oscillatory branch loses stability
in a saddle-node bifurcation. In the bifurcation diagram, the gluing bifurcation lies on the unsta-
ble portion of the oscillatory branch, between the turning point and the subcritical tertiary Hopf
bifurcation.

5. THE TERTTIARY HOPF BIFURCATION: STANDING WAVES AND TRAVELLING WAVES

In each of the bifurcation diagrams of Figure 5 the oscillatory branch ends in a Hopf bifurcation on the
steady branch, which retains stability thereafter. We now return to the PDEs in order to investigate
this final transition. Since it is non-local, occurring far from the primary bifurcations, we do not
expect details to be sensitive to the choice of A\. So we shall investigate a single value, A = 2/3,
for which the oscillatory branch appears at a secondary Hopf bifurcation (cf. Section 2). The
mesh has 60 intervals vertically, and discretization errors do not significantly affect the bifurcation
structure. Although the same solutions remain stable near the primary and secondary bifurcations
for either choice of lateral boundary conditions, behaviour near the tertiary bifurcation does depend
on whether periodic or mirror-symmetric boundary conditions are adopted. We begin therefore by
imposing the no-flux boundary conditions (12), so that the numerical experiments are consistent
with the amplitude equations presented in the previous section.

5.1. A subcritical Hopf bifurcation

For R sufficiently large, the steady branch is stable. At R = 150000, for example, there is a steady
solution with N = 3.6. With the boundary conditions (12) the steady branch can be followed
down to R = 100000, where N = 1.85. At R =~ 99000 the steady branch becomes unstable to
growing oscillations, which develop into a stable periodic solution, with reversals of the flow and
1.2 < N < 3.4. The oscillatory branch continues up to R ~ 107500, where it loses stability
in a saddle-node bifurcation. The bifurcation structure found in these numerical experiments is
illustrated in Figure 6(a). The oscillatory branch apparently ends in a subcritical tertiary Hopf
bifurcation and the overall pattern is similar to that in Figure 5(e).
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Figure 6. Summary of numerical experiments with A = 2/3. (a) With Z, (reflecting)
boundary conditions (12); (b) with O(2) (periodic) boundary conditions (11).

5.2. Travelling wave solutions

Next we impose the less restrictive periodic boundary conditions (11), which allow both standing
wave and travelling wave solutions. Now we find that the steady branch is stable for 150000 > R >
110000 but undergoes a pitchfork bifurcation at R = R; ~ 108000, giving rise to a pair of left-
and rightward travelling waves. As R is decreased the phase velocity of the waves increases, locally
as (R; — R)'/?, while the Nusselt number gradually falls. The branch of travelling wave solutions
remains stable down to R = 78000, where N = 1.60. At R = 77000 the travelling waves are unstable
to oscillatory perturbations, which develop into a standing wave solution with 1.15 < N < 2.12.
The standing waves remain stable as R is increased up to R = 102000. At R = 104000, trajectories
are attracted to the travelling wave solution.

This hysteresis requires the existence of an intermediate branch of modulated waves that
connects the branches of standing wave and travelling wave solutions. We indeed find such a branch
of stable modulated wave solutions, which leaves the standing wave branch in a supercritical pitchfork
bifurcation at R & 102200. Solutions on this branch are spatially asymmetric and drift very slowly
as they oscillate. The maximum value of N is 3-5% lower than that for the unstable standing wave
solutions. Apparently the modulated waves lose stability in a saddle-node bifurcation at R ~ 103800.
We presume that the branch of unstable modulated waves eventually meets the travelling wave
branch in a subcritical Hopf bifurcation at R & 77500, as depicted in Figure 6(b). This bifurcation
structure is consistent with the results already obtained in Figure 6(a) and with transitions between
standing waves and travelling waves in other problems (cf. Hurlburt et al., 1989). It can also be
related to appropriate low-order amplitude equations.
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Figure 7. Schematic bifurcation diagrams with travelling waves. (a)—(c) correspond
to Figure 5(a), (b) and (d): the travelling wave branch is always unstable. In (d),
the Hopf and pitchfork bifurcations on the steady branch have crossed, and stability
is transferred from standing waves to travelling waves via an intermediate branch of
modulated waves.

6. AMPLITUDE EQUATIONS FOR TRAVELLING WAVES

Branches of travelling and standing waves emerge together from the primary bifurcation for A > ..
Their behaviour is described by the fourth-order normal form equations for a Takens—Bogdanov bifur-
cation with O(2) symmetry, which have been thoroughly investigated by Dangelmayr and Knobloch
(1987). If we assume that the travelling waves bifurcate supercritically, the bifurcation diagrams
in Figure 3(a) and (b) are modified as shown in Dangelmayr and Knobloch (1987, Figure 8, cases
I+ (b) and I+ (a)). The only addition to Figure 3(a) would be an unstable branch of travelling wave
solutions. After the codimension-two bifurcation both standing waves and travelling waves bifurcate
separately from the subcritical steady branch and the Hopf bifurcation precedes the pitchfork. This
behaviour is included in Figures 7(a) and (b).

The normal form equations can be modified by adding higher order terms and it is easy to
predict how bifurcation diagrams might be altered. Among the many possibilities is the obvious
sequence in Figure 7(a), (b) and (c), which correspond to the cases in Figure 5(a), (b) and (d). In
these diagrams the travelling waves are always unstable. Inclusion of modulated waves allows more
complicated behaviour. In Figure 7(c) there is a tertiary Hopf bifurcation from the steady branch,
which is followed by a pitchfork bifurcation, giving rise to travelling waves, as the parameter y is
decreased. If these two bifurcations cross we expect that stability will be transferred from travelling
waves to standing waves via an intermediate branch of modulated waves, as depicted in Figure 7(d).
By distorting this pattern, we can recover the bifurcation structure actually found for the PDEs and
illustrated in Figure 6(b).
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7. CONCLUSION

In this paper we have used a specific model problem to illuminate a general property of nonlin-
ear convection. We have shown how, even when linear theory yields only monotonically growing
instability, oscillatory solutions may appear at a secondary Hopf bifurcation, and confirmed that
this behaviour is associated with a multiple bifurcation of codimension two that is preceded by a
subcritical Hopf bifurcation. Moreover, the secondary Hopf bifurcation is described by the familiar
Takens—Bogdanov normal form equations — once they are appropriately reinterpreted. To complete
the picture it is necessary to extend these amplitude equations by adding higher order terms. The
resulting system describes all the qualitative features found in our numerical experiments, including
not only periodic solutions (standing waves) but also travelling waves. The PDEs that we have
solved happen to be those governing two-dimensional compressible convection but we expect similar
behaviour to appear in two- or three-dimensional Boussinesq magnetoconvection, or in the presence
of rotation, or indeed in any system where there is a Takens-Bogdanov bifurcation with suitably
chosen parameters.

This treatment shows how apparently complicated behaviour in numerical experiments can
be interpreted, after a systematic investigation, by relating the PDEs to appropriate low-order
systems of ODEs (the amplitude equations) that can then be solved with much greater precision.
Our particular example demonstrates how this process can be successfully carried out for two-
dimensional rolls with a fixed aspect ratio. The same approach can be used to study bifurcations
involving changes in spatial symmetry as well as in temporal properties: the real challenge now is
to analyse the much richer spatiotemporal behaviour in three-dimensional convection.
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OSCILLATIONS AND SECONDARY BIFURCATIONS
IN NONLINEAR MAGNETOCONVECTION
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Abstract

Complicated bifurcation structures that appear in nonlinear systems governed by partial differential
equations (PDEs) can be explained by studying appropriate low-order amplitude equations. We
demonstrate the power of this approach by considering compressible magnetoconvection. Numerical
experiments reveal a transition from a regime with a subcritical Hopf bifurcation from the static
solution to one where finite-amplitude oscillations persist although there is no Hopf bifurcation from
the static solution. This transition is associated with a codimension-two bifurcation with a pair of
zero eigenvalues. We show that the bifurcation pattern found for the PDEs is indeed predicted by the
second-order normal form equation (with cubic nonlinearities) for a Takens—Bogdanov bifurcation
with Zs symmetry. We then extend this equation by adding quintic nonlinearities and analyse the
resulting system. Its predictions provide a qualitatively accurate description of solutions of the full
PDEs over a wider range of parameter values. Replacing the reflecting (Z2) lateral boundary con-
ditions with periodic (O(2)) boundaries allows stable travelling wave and modulated wave solutions
to appear; they could be described by a third-order system.

Keywords: Magnetoconvection, bifurcation theory, amplitude equations, Takens—Bogdanov bifurca-
tion, gluing bifurcation
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