332 research outputs found

    Rapidly Evolving Circularly Polarized Emission during the 1994 Outburst of GRO J1665-40

    Get PDF
    We report the detection of circular polarization during the 1994 outburst of the Galactic microquasar GRO J1655-40. The circular polarization is clearly detected at 1.4 and 2.4GHz, but not at 4.8 and 8.4GHz, where its magnitude never exceeds 5 mJy. Both the sign and magnitude of the circular polarization evolve during the outburst. The time dependence and magnitude of the polarized emission can be qualitatively explained by a model based on synchrotron emission from the outbursts, but is most consistent with circular polarization arising from propagation effects through the relativistic plasma surrounding the object.Comment: 8 pages, 3 figs., A&A accepte

    Observation of the Faraday effect via beam deflection in a longitudinal magnetic field

    Get PDF
    We report the observation of the magnetic field induced circular differential deflection of light at the interface of a Faraday medium. The difference in the angles of refraction or reflection between the two circular polarization components is a function of the magnetic field strength and the Verdet constant. The reported phenomena permit the observation of the Faraday effect not via polarization rotation in transmission, but via changes in the propagation direction in refraction or in reflection. An unpolarized light beam is predicted to split into its two circular polarization components. The light deflection arises within a few wavelengths at the interface and is therefore independent of pathlength

    On the reliability of polarization estimation using Rotation Measure Synthesis

    Get PDF
    We benchmark the reliability of the Rotation Measure (RM) synthesis algorithm using the 1005 Centaurus A field sources of Feain et al. (2009). The RM synthesis solutions are compared with estimates of the polarization parameters using traditional methods. This analysis provides verification of the reliability of RM synthesis estimates. We show that estimates of the polarization parameters can be made at lower S/N if the range of RMs is bounded, but reliable estimates of individual sources with unusual RMs require unconstrainted solutions and higher S/N. We derive from first principles the statistical properties of the polarization amplitude associated with RM synthesis in the presence of noise. The amplitude distribution depends explicitly on the amplitude of the underlying (intrinsic) polarization signal. Hence it is necessary to model the underlying polarization signal distribution in order to estimate the reliability and errors in polarization parameter estimates. We introduce a Bayesian method to derive the distribution of intrinsic amplitudes based on the distribution of measured amplitudes. The theoretically-derived distribution is compared with the empirical data to provide quantitative estimates of the probability that an RM synthesis solution is correct as a function of S/N. We provide quantitative estimates of the probability that any given RM synthesis solution is correct as a function of measured polarized amplitude and the intrinsic polarization amplitude compared to the noise.Comment: accepted for publication in the Astrophysical Journa

    Scattering of Gravitational Waves by the Weak Gravitational Fields of Lens Objects

    Full text link
    We consider the scattering of the gravitational waves by the weak gravitational fields of lens objects. We obtain the scattered gravitational waveform by treating the gravitational potential of the lens to first order, i.e. using the Born approximation. We find that the effect of scattering on the waveform is roughly given by the Schwarzschild radius of the lens divided by the wavelength of gravitational wave for a compact lens object. If the lenses are smoothly distributed, the effect of scattering is of the order of the convergence field κ\kappa along the line of sight to the source. In the short wavelength limit, the amplitude is magnified by 1+κ1+\kappa, which is consistent with the result in weak gravitational lensing.Comment: 4 pages, 2 figures, A&A Letters, in press, minor changes, references adde

    The Performance and Calibration of the CRAFT Fly's Eye Fast Radio Burst Survey

    Full text link
    Since January 2017, the Commensal Real-time ASKAP Fast Transients survey (CRAFT) has been utilising commissioning antennas of the Australian SKA Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in fly's eye mode. This is the first extensive astronomical survey using phased array feeds (PAFs), and a total of 20 FRBs have been reported. Here we present a calculation of the sensitivity and total exposure of this survey, using the pulsars B1641-45 (J1644-4559) and B0833-45 (J0835-4510, i.e.\ Vela) as calibrators. The design of the survey allows us to benchmark effects due to PAF beamshape, antenna-dependent system noise, radio-frequency interference, and fluctuations during commissioning on timescales from one hour to a year. Observation time, solid-angle, and search efficiency are calculated as a function of FRB fluence threshold. Using this metric, effective survey exposures and sensitivities are calculated as a function of the source counts distribution. The implied FRB rate is significantly lower than the 3737\,sky1^{-1}\,day1^{-1} calculated using nominal exposures and sensitivities for this same sample by \citet{craft_nature}. At the Euclidean power-law index of 1.5-1.5, the rate is 10.71.8+2.7(sys)±3(stat)10.7_{-1.8}^{+2.7}\,{\rm (sys)} \, \pm \, 3\,{\rm (stat)}\,sky1^{-1}\,day1^{-1} above a threshold of 57±6(sys)57\pm6\,{\rm (sys)}\,Jy\,ms, while for the best-fit index for this sample of 2.1-2.1, it is 16.61.5+1.9(sys)±4.7(stat)16.6_{-1.5}^{+1.9} \,{\rm (sys)}\, \pm 4.7\,{\rm (stat)}\,sky1^{-1}\,day1^{-1} above a threshold of 41.6±1.5(sys)41.6\pm1.5\,{\rm (sys)}\,Jy\,ms. This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them.Comment: 21 pages, 15 figures, 2 tables, accepted for publication in PAS

    Circularly polarized resonant soft x-ray diffraction study of helical magnetism in hexaferrite

    Full text link
    Magnetic spiral structures can exhibit ferroelectric moments as recently demonstrated in various multiferroic materials. In such cases the helicity of the magnetic spiral is directly correlated with the direction of the ferroelectric moment and measurement of the helicity of magnetic structures is of current interest. Soft x-ray resonant diffraction is particularly advantageous because it combines element selectivity with a large magnetic cross-section. We calculate the polarization dependence of the resonant magnetic x-ray cross-section (electric dipole transition) for the basal plane magnetic spiral in hexaferrite Ba0.8Sr1.2Zn2Fe12O22 and deduce its domain population using circular polarized incident radiation. We demonstrate there is a direct correlation between the diffracted radiation and the helicity of the magnetic spiral.Comment: 4 pages, 4 figure

    On the Search for Coherent Radiation from Radio Pulsars

    Get PDF
    We have examined data from pulsars B0950+08 and B0329+54 for evidence of temporally coherent radiation using the modified coherence function (MCF) technique of Jenet et al. (2001). We consider the influence of both instrumental bandpass and interstellar propagation effects. Even after removal of the effects due to the instrumental bandpass, we detect a signature in the MCF of our PSR B0329+54 data which is consistent with the definition of a coherent signal. However, we model the effects due to interstellar scintillation for this pulsar and show that it reproduces the observed signature. In particular, the temporal coherence time is close to the reciprocal of the decorrelation bandwidth due to diffractive scintillation. Furthermore, comparison of the coherence times of three pulsars reported by Jenet et al. (2001) with their expected diffractive decorrelation bandwidths suggests that the detection of coherence in these pulsars is also likely a result of interstellar scintillation, and is not intrinsic to the pulsars.Comment: 8 pages, 8 figures. Accepted for publication in Astronomy & Astrophysics (A&A

    Dual-Frequency Observations of 140 Compact, Flat-Spectrum Active Galactic Nuclei for Scintillation-Induced Variability

    Get PDF
    The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in Interstellar Scintillation (ISS) for sources at redshifts z > 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources, relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the Intergalactic Medium (IGM), in excess of the expected (1+z)^0.5 angular diameter scaling of brightness temperature limited sources due to cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a sample of 140 compact, flat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H-alpha intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15 to 3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at spectral indices of < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of 3 decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM.Comment: 30 pages, 14 figures, accepted for publication in the Astronomical Journa
    corecore