We report the observation of the magnetic field induced circular differential
deflection of light at the interface of a Faraday medium. The difference in the
angles of refraction or reflection between the two circular polarization
components is a function of the magnetic field strength and the Verdet
constant. The reported phenomena permit the observation of the Faraday effect
not via polarization rotation in transmission, but via changes in the
propagation direction in refraction or in reflection. An unpolarized light beam
is predicted to split into its two circular polarization components. The light
deflection arises within a few wavelengths at the interface and is therefore
independent of pathlength