5,314 research outputs found

    Increased H2_2CO production in the outer disk around HD 163296

    Get PDF
    Three formaldehyde lines were observed (H2_2CO 303_{03}--202_{02}, H2_2CO 322_{22}--221_{21}, and H2_2CO 321_{21}--220_{20}) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5 arcsecond (60 AU) spatial resolution. H2_2CO 303_{03}--202_{02} was readily detected via imaging, while the weaker H2_2CO 322_{22}--221_{21} and H2_2CO 321_{21}--220_{20} lines required matched filter analysis to detect. H2_2CO is present throughout most of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of the H2_2CO emission is likely caused by an optically thick dust continuum. The H2_2CO radial intensity profile shows a peak at 100 AU and a secondary bump at around 300 AU, suggesting increased production in the outer disk. Different parameterizations of the H2_2CO abundance were compared to the observed visibilities with χ2\chi^2 minimization, using either a characteristic temperature, a characteristic radius or a radial power law index to describe the H2_2CO chemistry. Similar models were applied to ALMA Science Verification data of C18^{18}O. In all modeling scenarios, fits to the H2_2CO data show an increased abundance in the outer disk. The overall best-fit H2_2CO model shows a factor of two enhancement beyond a radius of 270±\pm20 AU, with an inner abundance of 2 ⁣ ⁣5×10122\!-\!5 \times 10^{-12}. The H2_2CO emitting region has a lower limit on the kinetic temperature of T>20T > 20 K. The C18^{18}O modeling suggests an order of magnitude depletion in the outer disk and an abundance of 4 ⁣ ⁣12×1084\!-\!12 \times 10^{-8} in the inner disk. The increase in H2_2CO outer disk emission could be a result of hydrogenation of CO ices on dust grains that are then sublimated via thermal desorption or UV photodesorption, or more efficient gas-phase production beyond about 300 AU if CO is photodisocciated in this region

    Speckle Interferometry of Metal-Poor Stars in the Solar Neighborhood. I

    Full text link
    We report the results of speckle-interferometric observations of 109 high proper-motion metal-poor stars made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We resolve eight objects -- G102-20, G191-55, BD+19^\circ~1185A, G89-14, G87-45, G87-47, G111-38, and G114-25 -- into individual components and we are the first to astrometrically resolve seven of these stars. New resolved systems included two triple (G111-38, G87-47) and one quadruple (G89-14) star. The ratio of single-to-binary-to-triple-to-quadruple systems among the stars of our sample is equal to 71:28:6:1.Comment: 8 pages, 4 figures, accepted to Astrophysical Bulleti

    A germline TaqI restriction fragment length polymorphism in the progesterone receptor gene in ovarian carcinoma.

    Get PDF
    Clinical outcome in ovarian carcinoma is predicted by progesterone receptor status, indicating an endocrine aspect to this disease. Peripheral leucocyte genomic DNAs were obtained from 41 patients with primary ovarian carcinoma and 83 controls from Ireland, as well as from 26 primary ovarian carcinoma patients and 101 controls in Germany. Southern analysis using a human progesterone receptor (hPR) cDNA probe identified a germline TaqI restriction fragment length polymorphism (RFLP) defined by two alleles: T1, represented by a 2.7 kb fragment; and T2, represented by a 1.9 kb fragment and characterised by an additional TaqI restriction site with respect to T1. An over-representation of T2 in ovarian cancer patients compared with controls in the pooled Irish/German population (P < 0.025) was observed. A difference (P < 0.02) in the distribution of the RFLP genotypes between Irish and German control populations was also observed. The allele distributions could not be shown to differ significantly from Hardy-Weinberg distribution in any subgroup. Using hPR cDNA region-specific probes, the extra TaqI restriction site was mapped to intron G of the hPR gene

    Oxygen Abundances in Two Metal-Poor Subgiants from the Analysis of the 6300 A Forbidden O I Line

    Full text link
    Recent LTE analyses (Israelian et al. 1998 and Bosegaard et al. 1999) of the OH bands in the optical-ultraviolet spectra of nearby metal-poor subdwarfs indicate that oxygen abundances are generally higher than those previously determined. The difference increases with decreasing metallicity and reaches delta([O/Fe]) ~ +0.6 dex as [Fe/H] approaches -3.0. Employing high resolution (R = 50000), high S/N (~ 250) echelle spectra of the two stars found by Israelian et al. (1998) to have the highest [O/Fe]-ratios, viz, BD +23 3130 and BD +37 1458, we conducted abundance analyses based on about 60 Fe I and 7-9 Fe II lines. We determined from Kurucz LTE models the values of the stellar parameters, as well as abundances of Na, Ni, and the traditional alpha-elements, independent of the calibration of color vs TeffT_{eff} scales. We determined oxygen abundances from spectral synthesis of the stronger line (6300 A) of the [O I] doublet. The syntheses of the [O I] line lead to smaller values of [O/Fe], consistent with those found earlier among halo field and globular cluster giants. We obtain [O/Fe] = +0.35 +/- 0.2 for BD +23 3130 and +0.50 +/- 0.2 for BD +37 1458. In the former, the [O I] line is very weak (~ 1 mA), so that the quoted [O/Fe] value may in reality be an upper limit. Therefore in these two stars a discrepancy exists between the [O/Fe]- ratios derived from [O I] and the OH feature, and the origin of this difference remains unclear. Until the matter is clarified, we suggest it is premature to conclude that the ab initio oxygen abundances of old, metal-poor stars need to be revised drastically upward.Comment: 38 pages, 5 tables, 14 figures To appear in July 1999 AJ Updated April 16, 1999. Fixed typo

    Line Broadening in Field Metal-poor Red Giant and Red Horizontal Branch Stars

    Get PDF
    We report 349 radial velocities for 45 metal-poor field red giant and red horizontal branch stars. We have have identified one new spectroscopic binary, HD 4306, and one possible such system, HD 184711. We also report 57 radial velocities for 11 of the 91 stars reported on previously by Carney et al. (2003). As was found in the previous study, radial velocity "jitter" is present in many of the most luminous stars. Excluding stars showing spectroscopic binary orbital motion, all 7 of the red giants with M(V) <= -2.0 display jitter, as well as 3 of the 14 stars with -2.0 <= M(V) <= -1.4. We have also measured line broadening in all of the new spectra, using synthetic spectra as templates. The most luminous red giants show significant line broadening, as do many of the red horizontal branch stars, and we discuss briefly possible causes.Comment: To appear in the Astronomical Journa

    Stars of extragalactic origin in the solar neighborhood

    Full text link
    We computed the spatial velocities and the galactic orbital elements using Hipparcos data for 77 nearest main-sequence F-G-stars with published the iron, magnesium, and europium abundances determined from high dispersion spectra and with the ages estimated from theoretical isochrones. A comparison with the orbital elements of the globular clusters that are known was accreted by our Galaxy in the past reveals stars of extragalactic origin. We show that the relative elemental abundance ratios of r- and \alpha- elements in all the accreted stars differ sharply from those in the stars that are genetically associated with the Galaxy. According to current theoretical models, europium is produced mainly in low mass Type II supernovae (SNe II), while magnesium is synthesized in larger amounts in high mass SN II progenitors. Since all the old accreted stars of our sample exhibit a significant Eu overabundance relative to Mg, we conclude that the maximum masses of the SNII progenitors outside the Galaxy were much lower than those inside it are. On the other hand, only a small number of young accreted stars exhibit low negative ratios [Eu/Mg]<0[Eu/Mg] < 0. The delay of primordial star formation burst and the explosions of high mass SNe II in a relatively small part of extragalactic space can explain this situation. We provide evidence that the interstellar medium was weakly mixed at the early evolutionary stages of the Galaxy formed from a single proto-galactic cloud and that the maximum mass of the SN II progenitors increased in it with time simultaneously with the increase in mean metallicity.Comment: Accepted for 2004, Astronomy Letters, Vol. 30, No. 3, P.148-158 15 pages, 3 figure

    The Multiple Origin of Blue Straggler Stars: Theory vs. Observations

    Full text link
    In this chapter we review the various suggested channels for the formation and evolution of blue straggler stars (BSSs) in different environments and their observational predictions. These include mass transfer during binary stellar evolution - case A/B/C and D (wind Roche-lobe overflow) mass transfer, stellar collisions during single and binary encounters in dense stellar cluster, and coupled dynamical and stellar evolution of triple systems. We also explore the importance of the BSS and binary dynamics in stellar clusters. We review the various observed properties of BSSs in different environments (halo and bulge BSSs, BSSs in globular clusters and BSSs in old open clusters), and compare the current observations with the theoretical predictions for BSS formation. We try to constrain the likely progenitors and processes that play a role in the formation of BSSs and their evolution. We find that multiple channels of BSS formation are likely to take part in producing the observed BSSs, and we point out the strengths and weaknesses of each the formation channel in respect to the observational constraints. Finally we point out directions to further explore the origin of BSS, and highlight eclipsing binary BSSs as important observational tool.Comment: Chapter 11, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    An Overview of the Rotational Behavior of Metal--Poor Stars

    Full text link
    The present paper describes the behavior of the rotational velocity in metal--poor stars ([Fe/H]<-0.5 dex) in different evolutionary stages, based on Vsini values from the literature. Our sample is comprised of stars in the field and some Galactic globular clusters, including stars on the main sequence, the red giant branch (RGB), and the horizontal branch (HB). The metal--poor stars are, mainly, slow rotators, and their Vsini distribution along the HR diagram is quite homogeneous. Nevertheless, a few moderate to high values of Vsini are found in stars located on the main sequence and on the HB. We show that the overall distribution of Vsini values is basically independent of metallicity for the stars in our sample. In particular, the fast-rotating main sequence stars in our sample present similar rotation rates as their metal-rich counterparts, suggesting that some of them may actually be fairly young, in spite of their low metallicity, or else that at least some of them would be better classified as blue straggler stars. We do not find significant evidence of evolution in Vsini values as a function of position on the RGB; in particular, we do not confirm previous suggestions that stars close to the RGB tip rotate faster than their less evolved counterparts. While the presence of fast rotators among moderately cool blue HB stars has been suggested to be due to angular momentum transport from a stellar core that has retained significant angular momentum during its prior evolution, we find that any such transport mechanisms must likely operate very fast as the star arrives on the zero-age HB (ZAHB), since we do not find a link between evolution off the ZAHB and Vsini values. We present an extensive tabulation of all quantities discussed in this paper, including rotation velocities, temperatures, gravitieComment: 22 pages, 10 figure

    Multiple agency perspective, family control, and private information abuse in an emerging economy

    Get PDF
    Using a comprehensive sample of listed companies in Hong Kong this paper investigates how family control affects private information abuses and firm performance in emerging economies. We combine research on stock market microstructure with more recent studies of multiple agency perspectives and argue that family ownership and control over the board increases the risk of private information abuse. This, in turn, has a negative impact on stock market performance. Family control is associated with an incentive to distort information disclosure to minority shareholders and obtain private benefits of control. However, the multiple agency roles of controlling families may have different governance properties in terms of investors’ perceptions of private information abuse. These findings contribute to our understanding of the conflicting evidence on the governance role of family control within a multiple agency perspectiv
    corecore