2,720 research outputs found

    Photoemission of a doped Mott insulator: spectral weight transfer and qualitative Mott-Hubbard description

    Full text link
    The spectral weight evolution of the low-dimensional Mott insulator TiOCl upon alkali-metal dosing has been studied by photoelectron spectroscopy. We observe a spectral weight transfer between the lower Hubbard band and an additional peak upon electron-doping, in line with quantitative expectations in the atomic limit for changing the number of singly and doubly occupied sites. This observation is an unconditional hallmark of correlated bands and has not been reported before. In contrast, the absence of a metallic quasiparticle peak can be traced back to a simple one-particle effect.Comment: 4 pages, 4 figures, related theoretical work can be found in arXiv:0905.1276; shortene

    Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures by hard X-ray photoelectron spectroscopy

    Full text link
    The conducting interface of LaAlO3_3/SrTiO3_3 heterostructures has been studied by hard X-ray photoelectron spectroscopy. From the Ti~2pp signal and its angle-dependence we derive that the thickness of the electron gas is much smaller than the probing depth of 4 nm and that the carrier densities vary with increasing number of LaAlO3_3 overlayers. Our results point to an electronic reconstruction in the LaAlO3_3 overlayer as the driving mechanism for the conducting interface and corroborate the recent interpretation of the superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless type.Comment: 4 pages, 4 figure

    Sampling Effects on Gene Expression Data from a Human Tumour Xenograft

    Get PDF
    Human tumour tissue transplanted to and passed through immunodeficient mice as xenografts make powerful  model systems to study tumour biology, in particular to investigate the dynamics of treatment responses,  e.g. to chemotherapeutic agents. Before embarking on large-scale gene expression analysis of chemotherapy  response in human sarcoma xenografts, we investigated the reproducibility of expression  patterns derived from such samples. We compared expression profiles from tumours from the same or different  mice and of various sizes, as well as central and peripheral parts of the same tumours. Twenty-three  microarray hybridisations were performed on cDNA arrays representing 13000 genes, using direct labelling  of target cDNAs. An ANOVA-based linear mixed-effects model was constructed, and variances of  experimental and biological factors contributing to variability were estimated. With our labelling procedure  used, the effect of switching the dyes was pronounced compared to all other factors. We detected a small  variation in gene expression between two tumours in the same mouse as well as between tumours from different  mice. Furthermore, central or peripheral position in the tumour had only moderate influence on the  variability of the expression profiles. The biological variability was comparable to experimental variability  caused by labelling, confirming the importance of both biological and technical replicates. We further  analysed the data by pair-wise Fisher’s linear discriminant method and identified genes that were significantly  differentially expressed between samples taken from peripheral or central parts of the tumours.  Finally, we evaluated the result of pooling biological samples to estimate the recommended number of  arrays and hybridisations for microarray experiments in this model.

    Probing the interface of Fe3O4/GaAs thin films by hard x-ray photoelectron spectroscopy

    Full text link
    Magnetite (Fe3O4) thin films on GaAs have been studied with HArd X-ray PhotoElectron Spectroscopy (HAXPES) and low-energy electron diffraction. Films prepared under different growth conditions are compared with respect to stoichiometry, oxidation, and chemical nature. Employing the considerably enhanced probing depth of HAXPES as compared to conventional x-ray photoelectron spectroscopy (XPS) allows us to investigate the chemical state of the film-substrate interfaces. The degree of oxidation and intermixing at the interface are dependent on the applied growth conditions; in particular, we found that metallic Fe, As2O3, and Ga2O3 exist at the interface. These interface phases might be detrimental for spin injection from magnetite into GaAs.Comment: 5 pages, 3 figure

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Combinatorics of Open Covers VI: Selectors for Sequences of Dense Sets

    Get PDF
    We consider the following two selection principles for topological spaces: [Principle 1:] { For each sequence of dense subsets, there is a sequence of points from the space, the n-th point coming from the n-th dense set, such that this set of points is dense in the space; [Principle 2:]{ For each sequence of dense subsets, there is a sequence of finite sets, the n-th a subset of the n-th dense set, such that the union of these finite sets is dense in the space. We show that for separable metric space X one of these principles holds for the space C_p(X) of realvalued continuous functions equipped with the pointwise convergence topology if, and only if, a corresponding principle holds for a special family of open covers of X. An example is given to show that these equivalences do not hold in general for Tychonoff spaces. It is further shown that these two principles give characterizations for two popular cardinal numbers, and that these two principles are intimately related to an infinite game that was studied by Berner and Juhasz

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate

    Direct k-space mapping of the electronic structure in an oxide-oxide interface

    Full text link
    The interface between LaAlO3 and SrTiO3 hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments. Experimentally, it has been established that Ti 3d electrons are confined to the interface. Using soft x-ray angle-resolved resonant photoelectron spectroscopy we have directly mapped the interface states in k-space. Our data demonstrate a charge dichotomy. A mobile fraction contributes to Fermi surface sheets, whereas a localized portion at higher binding energies is tentatively attributed to electrons trapped by O-vacancies in the SrTiO3. While photovoltage effects in the polar LaAlO3 layers cannot be excluded, the apparent absence of surface-related Fermi surface sheets could also be fully reconciled in a recently proposed electronic reconstruction picture where the built-in potential in the LaAlO3 is compensated by surface O-vacancies serving also as charge reservoir.Comment: 8 pages, 6 figures, incl. Supplemental Informatio
    corecore