262 research outputs found

    Superconductivity at 2.3 K in the misfit compound (PbSe)1.16(TiSe2)2

    Full text link
    The structural misfit compound (PbSe)1.16(TiSe2)2 is reported. It is a superconductor with a Tc of 2.3 K. (PbSe)1.16(TiSe2)2 derives from a parent compound, TiSe2, which shows a charge density wave transition and no superconductivity. The crystal structure, characterized by high resolution electron microscopy and powder x-ray diffraction, consists of two layers of 1T-TiSe2 alternating with a double layer of (100) PbSe. Transport measurements suggest that the superconductivity is induced by charge transfer from the PbSe layers to the TiSe2 layers.Comment: 17 pages, 4 figures. To be published in Physical Review

    Shorescape-level factors drive distribution and condition of a salt marsh facilitator (Geukensia Demissa)

    Get PDF
    Ribbed mussels (Geukensia demissa) are a highly abundant bivalve filter feeder throughout the salt marshes of the U.S. Atlantic Coast. These mussels form a mutualistic relationship with smooth cordgrass Spartina alterniflora wherein the grass provides habitat and shade to the mussels, and the mussels stabilize the sediment and fertilize the grass. Salt marshes are, however, rapidly changing and eroding as humans modify the coast, and the rate of sea level rise is accelerating. In order to understand how ribbed mussels may respond to their changing habitat, we collected mussel density and distribution data from 30 marshes covering the range of geomorphic settings found in lower Chesapeake Bay. We used a combination of in situ and GIS-derived spatial variables to develop spatially applied models of ribbed mussel density and physical condition. Of the estimated 1.06 billion ribbed mussels in Virginia, we found that mussels were most abundant along the front edge of marshes in wide creeks, rivers, or bays with dense Spartina and minimal proximal forest, set in agriculturally dominated areas. In contrast, mussel condition was highest in fringing marshes located in narrow tidal creeks. Ribbed mussels responded to factors at a variety of scales, ranging from extremely local (0.5 m) to larger shorescapes (≥300 m). The methods that we used to create models linking both aquatic and terrestrial variables to explain the variation in ribbed mussel populations along the shoreline provide a valuable tool for identifying baselines and assessing potential for change across estuary-level spatial scales not only for ribbed mussels in the Chesapeake Bay, but also for other sessile, intertidal species in other systems

    Centralized Modularity of N-Linked Glycosylation Pathways in Mammalian Cells

    Get PDF
    Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are attached to proteins and lipids. Glycans are involved in fundamental biological processes, including protein folding and clearance, cell proliferation and apoptosis, development, immune responses, and pathogenesis. One of the major types of glycans, N-linked glycans, is formed by sequential attachments of monosaccharides to proteins by a limited number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thereby generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigated the large-scale organization of such N-linked glycosylation pathways in mammalian cells. The N-linked glycosylation pathways are extremely modular, and are composed of cohesive topological modules that directly branch from a common upstream pathway of glycan synthesis. This unique structural property allows the glycan production between modules to be controlled by the upstream region. Although the enzymes act on multiple glycan substrates, indicating cross-talk between modules, the impact of the cross-talk on the module-specific enhancement of glycan synthesis may be confined within a moderate range by transcription-level control. The findings of the present study provide experimentally-testable predictions for glycosylation processes, and may be applicable to therapeutic glycoprotein engineering

    E-government adoption: A cultural comparison

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer Science + Business Media, LLC 2008.E-government diffusion is an international phenomenon. This study compares e-government adoption in the U.K. to adoption in the U.S. In particular, this study seeks to determine if the same factors are salient in both countries. Several studies have explored citizen acceptance of e-government services in the U.S. However, few studies have explored this phenomenon in the U.K. To identify the similarities and differences between the U.K. and the U.S. a survey is conducted in the U.K. and the findings are compared to the literature that investigates diffusion in the U.S. This study proposes a model of e-government adoption in the U.K. based on salient factors in the U.S. A survey is administered to 260 citizens in London to assess the importance of relative advantage, trust and the digital divide on intention to use e-government. The results of binary logistic regression indicate that there are cultural differences in e-government adoption in the U.K. and the U.S. The results indicate that of the prevailing adoption constructs, relative advantage and trust are pertinent in both the U.S. and the U.K., while ICT adoption barriers such as access and skill may vary by culture. Implications for research and practice are discussed

    Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean

    Get PDF
    Experimental and modelling work suggests a strong dependence of olive flowering date on spring temperatures. Since airborne pollen concentrations reflect the flowering phenology of olive populations within a radius of 50 km, they may be a sensitive regional indicator of climatic warming. We assessed this potential sensitivity with phenology models fitted to flowering dates inferred from maximum airborne pollen data. Of four models tested, a thermal time model gave the best fit for Montpellier, France, and was the most effective at the regional scale, providing reasonable predictions for 10 sites in the western Mediterranean. This model was forced with replicated future temperature simulations for the western Mediterranean from a coupled ocean-atmosphere general circulation model (GCM). The GCM temperatures rose by 4·5 °C between 1990 and 2099 with a 1% per year increase in greenhouse gases, and modelled flowering date advanced at a rate of 6·2 d per °C. The results indicated that this long-term regional trend in phenology might be statistically significant as early as 2030, but with marked spatial variation in magnitude, with the calculated flowering date between the 1990s and 2030s advancing by 3–23 d. Future monitoring of airborne olive pollen may therefore provide an early biological indicator of climatic warming in the Mediterranean

    The phenology of winter rye in Poland: an analysis of long-term experimental data

    Get PDF
    The study of the phenology of crops, although quite popular, has limitations, mainly because of frequent changes to crop varieties and management practices. Here, we present data on the phenology and yield of winter rye in western Poland collected between 1957 and 2012 from a long-term field experiment. Data were examined for trends through time and compared to climatological factors using regression analysis. Both annual air temperature and precipitation increased during the study period, equivalent to 2 °C and 186 mm, respectively, over the 52-year period for which met data were available. We detected significant delays in sowing date and recently in emergence, but significant advances were apparent in full flowering date equivalent to 4 days/decade. Yield and plant density experienced a step like change in 1986; yield increasing by ca. 70 % and plant density increasing by ca. 50 %, almost coinciding with a similar change in annual mean temperature, but most likely caused by a changed seed rate and use of herbicides. Future climate change is expected to have a greater impact on this crop, but farmers may be able to adapt to these changes by modifying water regimes, using new machinery and sowing new rye varieties

    Concept drift over geological times : predictive modeling baselines for analyzing the mammalian fossil record

    Get PDF
    Fossils are the remains organisms from earlier geological periods preserved in sedimentary rock. The global fossil record documents and characterizes the evidence about organisms that existed at different times and places during the Earth's history. One of the major directions in computational analysis of such data is to reconstruct environmental conditions and track climate changes over millions of years. Distribution of fossil animals in space and time make informative features for such modeling, yet concept drift presents one of the main computational challenges. As species continuously go extinct and new species originate, animal communities today are different from the communities of the past, and the communities at different times in the past are different from each other. The fossil record is continuously increasing as new fossils and localities are being discovered, but it is not possible to observe or measure their environmental contexts directly, because the time is gone. Labeled data linking organisms to climate is available only for the present day, where climatic conditions can be measured. The approach is to train models on the present day and use them to predict climatic conditions over the past. But since species representation is continuously changing, transfer learning approaches are needed to make models applicable and climate estimates to be comparable across geological times. Here we discuss predictive modeling settings for such paleoclimate reconstruction from the fossil record. We compare and experimentally analyze three baseline approaches for predictive paleoclimate reconstruction: (1) averaging over habitats of species, (2) using presence-absence of species as features, and (3) using functional characteristics of species communities as features. Our experiments on the present day African data and a case study on the fossil data from the Turkana Basin over the last 7 million of years suggest that presence-absence approaches are the most accurate over short time horizons, while species community approaches, also known as ecometrics, are the most informative over longer time horizons when, due to ongoing evolution, taxonomic relations between the present day and fossil species become more and more uncertain.Peer reviewe
    corecore